Osteoarthritis (OA) is a common, debilitating joint disease involving degeneration of cartilage and bone. It has been suggested that subtle changes in the molecular structure of subchondral bone may precede cartilaginous changes in the osteoarthritic joint. To explore these changes Raman spectroscopy was employed as a diagnostic tool. Raman spectroscopy measures inelastic scattered laser light produced when photons interact with chemical materials. Resultant changes in wavelength form spectra relative to the chemical composition of the given sample: with bone this includes the mineral and matrix components, unlike conventional X-rays. The aim of our study is to explore the hypothesis: Changes in matrix composition of osteoarthritic subchondral bone can be detected with Raman spectroscopy. pQCT and Raman spectroscopy were employed to determine the bone mineral density (BMD) and bone quality, respectively. Ten medial compartment OA and five control (non-OA) tibial plateaus were interrogated and analysis performed to compare OA to control, and medial to lateral compartments. The subchondral bone of the medial OA compartments had higher BMD (p=0.05) and thickness compared to lateral and control samples. Spectral analysis revealed there is no difference between the medial and lateral compartments within either cohort. However, there is a statistically significant (p=0.02) spectral difference between the OA and control specimens. The detection of bone matrix changes in osteoarthritis using Raman spectroscopy contributes to the understanding of the biochemical signature of subchondral bone across diseased and control tibial plateaus. This technique has potential to shed light on the role of bone in osteoarthritis.