Patients with multiple myeloma (MM) develop deposits in the spine
which may lead to vertebral compression fractures (VCFs). Our aim
was to establish which spinopelvic parameters are associated with
the greatest disability in patients with spinal myeloma and VCFs. We performed a retrospective cross-sectional review of 148 consecutive
patients (87 male, 61 female) with spinal myeloma and analysed correlations
between spinopelvic parameters and patient-reported outcome scores.
The mean age of the patients was 65.5 years (37 to 91) and the mean
number of vertebrae involved was 3.7 (1 to 15).Aims
Patients and Methods
The widespread use of MRI has revolutionised
the diagnostic process for spinal disorders. A typical protocol
for spinal MRI includes T1 and T2 weighted sequences in both axial
and sagittal planes. While such an imaging protocol is appropriate
to detect pathological processes in the vast majority of patients,
a number of additional sequences and advanced techniques are emerging.
The purpose of the article is to discuss both established techniques
that are gaining popularity in the field of spinal imaging and to
introduce some of the more novel ‘advanced’ MRI sequences with examples
to highlight their potential uses. Cite this article:
To assess the clinical and radiologic outcome of MM patients with thoracic spine involvement and concomitant pathologic sternal fractures with a resultant severe sagittal plane deformity. A prospective cohort study (n=391) was performed over a 7-year period at a national tertiary referral centre for the management of multiple myeloma with spinal involvement. Clinical, serological and pathologic variables, radiologic findings, treatment strategies and outcome measures were prospectively collected. Pre-treatment and post-treatment clinical outcome measures utilised included EQ-5D, VAS, ODI and RMD scoring systems. 13 MM patients presented with a severe symptomatic progressive sagittal plane deformity with a history of pathologic thoracic compression fractures and concomitant pathologic sternal fracture. All patients with concomitant sternal fractures displayed the radiographic features and spinopelvic parameters of positive sagittal malalignment and attempted clinical compensation. All patients had poor health related quality of life measures when assessed. Pathologic sternal fracture in a MM patient with thoracic compression fractures is a risk factor for the development of a severe thoracic kyphotic deformity and sagittal malalignment. This has been demonstrated to be associated with a very poor health related quality of life.
To assess screw malposition rates and complications associated with pedicle screw insertion using 3D navigation technology. A retrospective study was undertaken for all cases where O-arm® and StealthStation® systems were used over a 2-year period. The primary outcome measure was return to theatre rates for pedicle screw malposition. A total of 938 screws were inserted (934 thoracolumbar and 4 cervical), and 103 patients underwent spinal fixation using O-arm® and StealthStation® navigation. 64 were revision cases and 39 primary cases. Average number of levels was 4.6. There were a total of 10 complications: 3 infections, 1 DVT, 1 PE, 1 fast atrial fibrillation (AF), 1 screw malposition, 1 non-union, 1 undisplaced vertebral body fracture and 1 nerve root compression following osteotomy. The percentage return to theatre for screw malposition using 3D navigation was 1% of patients and 0.1% of pedicle screws. No patients developed permanent neurological compromise. These systems provide accuracy that is comparable to traditional 2D fluoroscopic techniques. We advocate their use in the safe insertion of pedicle screws in complex revision deformity cases where original anatomical landmarks are absent or obscured. We also believe that radiation exposure is considerably less with navigation especially in these complex and revision cases.
Idiopathic scoliosis (IS) has been associated with several genetic loci in varying study populations, reflecting the disorder's genetic complexity. One region of interest is on chromosome 17, flanking regions linked to neurofibromatosis type 1 (NF1). This region is of particular relevance because the most common osseous manifestation in NF1 is scoliosis (10–30% of patients). This alludes to a potential genetic correlation within this region affecting spinal development or stability. The objective of this research is to identify candidate genes within this region that are statistically linked to IS. An initial population of IS families recruited through approval by the institutional review board (202 families; 1198 individuals) had DNA harvested from blood, and underwent genomic screening, finemapping, and statistical analyses. We identified a specific familial subset: families with males having undergone surgery for scoliosis (17 families, 147 individuals). The initial genome-wide scan indicated that this subset was linked to chromosome 17q.11.2. The most prominent marker, D17s975, (p=0·0003) at 25.12 Mb is adjacent to the NF1 deletional region. We then analysed a custom panel of single-nucleotide polymorphisms (SNPs) extending from 18·30–31·47 Mb for linkage through Taqman SNP assay protocol. With allele specific fluorescent tags, allelic discrimination was done with real-time PCR.Introduction
Methods