Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 37 - 37
1 Dec 2017
Paul L Schubert T Evrard R Docquier P
Full Access

INTRODUCTION

Bone tumour resection and subsequent reconstruction remains challenging for the surgeon. Obtaining adequate margins is mandatory to decrease the risk of local recurrence. Improving surgical margins quality without excessive resection, reducing surgical time and increasing the quality of the reconstruction are the main goals of today's research in bone tumour surgical management. With the outstanding improvements in imaging and computerised planning, it is now a standard. However, surgical accuracy is essential in orthopaedic oncologic surgery (Grimmer 2005). Patient specific instruments (PSI) may greatly improve the surgeon's ability to achieve the targeted resection. Thanks to its physical support, PSI can physically guide the blade yielding to a better control over the cutting process (Wong, 2014). Surgical time might significantly be reduced as well when compared to conventional method or navigated procedure. Finally, reconstruction may gain in rapidity and quality especially when allograft is the preferred solution as PSI can be designed as well for allograft cutting (Bellanova, 2013). Since 2011, PSI have systematically been used in our institution for bone tumour resection and when applicable allograft reconstruction. This paper reports the mid- to long-term medical outcomes on a large series.

MATERIALS AND METHODS

Between 2011 and 2016, we systematically used PSI to remove bone tumours in 30 patients. The pre-operative planning involved the tumour delineation drawn on MRI by the surgeon. The MRI and obtained tumour volume were transferred to the CT-scan by image fusion (co- registration). Cutting planes were positioned around the tumour including a safe margin. The PSI were designed to ensure a sufficient stability but kept thin enough to limit the bone exposure. The PSI was manufactured by 3D-printing in a biocompatible and sterilisable material. PSI has been intraoperatively to cut the bone with predetermined margins. Medical files were reviewed for large data collection: type, size and site of the tumour, pre-and post-operative metastatic status, bone and soft tissues resection margins, local recurrence, use of an allograft and a PSI for graft adjustment or not for the reconstruction, the fusion of the allograft when applicable, the follow-up time and early/late complications.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 35 - 35
1 Dec 2017
Bosma S Jutte P Wong K Paul L Gerbers J
Full Access

Computer Assisted Surgery (CAS) and Patient Specific Instrumentation (PSI) have been reported to increase accuracy and predictability of tumour resections. The technically demanding joint-preserving surgery that retains the native joint with the better function may benefit from the new techniques. This cadaver study is to investigate the surgical accuracy of CAS and PSI in joint-preserving surgery of knee joint.

CT scans of four cadavers were performed and imported into an engineering software (MIMICS, Materialise) for the 3D surgical planning of simulated, multiplanar joint-preserving resections for distal femur or proximal tibia metaphyseal bone sarcoma. The planned resections were transferred to the navigation system (OrthoMap 3D, Stryker) for navigation planning and used for the design and fabrication of the PSI. Each of the four techniques (freehand, CAS, PSI and CAS + PSI) was used in four joint-preserving resections. Location accuracy (the maximum deviation of distance between the planned and the achieved resections) and bone resection time were measured. The results were compared by using t-test (statistically significant if P< 0.05).

Both the CAS+PSI and PSI techniques could reproduce the planned resections with a mean location accuracy of < 2 mm, compared to 3.6 mm for CAS assistance and 9.2 mm for the freehand technique. There was no statistical difference in location accuracy between the CAS+PSI and the PSI techniques (p=0.92) but a significant difference between the CAS technique and the CAS+PSI (p=0.042) or PSI technique (p=0.034) and the freehand technique with the other assisted techniques. The PSI technique took the lowest mean time of 4.78 ±0.97min for bone resections. This was significantly different from the CAS+PSI technique (mean 12.78 min; p < 0.001) and the CAS technique (mean 16.97 min; p = < 0.001).

CAS and PSI assisted techniques help reproduce the planned multiplanar resections. The PSI technique could achieve the most accurate bone resections (within 2mm error) with the least time for bone resections. Combining CAS with PSI might not improve surgical accuracy and might increase bone resection time. However, PSI placement on the bone surface depends only on the subjective feeling of surgeons and may not apply if the extraosseous tumor component is large. Combining CAS with PSI could address the limitations.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 11 - 11
1 Oct 2014
Paul L Cartiaux O Odri G Gouin F
Full Access

Resecting bone tumours within the pelvis is highly challenging and requires good cutting accuracy to achieve sufficient margins. Computer-assisted technologies such as intraoperative navigation have been developed for pelvic bone tumour resection. Patient-specific instruments have been transposed to tumour surgery. The present study reports a series of 11 clinical cases of PSI-assisted bone tumour surgery within the pelvis, and assesses how accurately a preoperative resection strategy can be replicated intraoperatively with the PSI.

The patient series consisted in 11 patients eligible for curative surgical resection of primary bone tumor of the pelvis. Eight patients had a bone sarcoma of iliac bone involving the acetabulum, two patients had a sacral tumor, and one patient had a chondrosarcoma of proximal femur with intra-articular hip extension. Resection planning was preoperatively defined including a safe margin defined by the surgeon from 3 up to 15 mm. PSI were designed using a computer-aided design software according to the desired resection strategy and produced by additive manufacturing technology. Intraoperatively, PSI were positioned freehand by the surgeon and fixed on the bone surface using K-wires. The standard surgical approach has been used for each patient. Dissection was in accordance with the routine technique. There was no additional bone exposure to position the PSI. Histopathological analysis of the resected tumor specimens was performed to evaluate the achieved resection margins. Postoperative CT were acquired and matched to the preoperative CT to assess the local control of the tumor. Two parameters were measured: achieved resection margin (minimum distance to the tumor) and location accuracy (maximum distance between achieved and planned cuttings; ISO1101 standard).

PSI were quick and easy to use with a positioning onto the bone surface in less than 5 minutes for all cases. The positioning of the PSI was considered unambiguous for all patients. Histopathological analysis classified all achieved resection margins as R0 (tumor-free), except for two patients : R2 because of a morcelised tumour and R1 in soft tissues. The errors in safe margin averaged −0.8 mm (95% CI: −1.8 mm to 0.1 mm). The location accuracy of the achieved cut planes with respect to the desired cut planes averaged 2.5 mm (95% CI: 1.8 to 3.2 mm).

Results in terms of safe margin or the location accuracy demonstrated how PSI enabled the surgeon to intraoperatively replicate the resection strategies with a very good cutting accuracy. These findings are consistent with the levels of bone-cutting accuracy published in the literature. PSI technology described in this study achieved clear bone margins for all patients. Longer follow-up period is required but it appears that PSI has the potential to provide clinically acceptable margins.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 82 - 82
1 Oct 2012
Paul L Docquier PL Cartiaux O Delloye C Banse X
Full Access

Primary malignant bone tumor often requires a surgical treatment to remove the tumor and sometimes restore the anatomy using a frozen allograft. During the removal, there is a need for a highest possible accuracy to obtain a wide safe margin from the bone tumour. In case of reconstruction using a bone allograft, an intimate and precise contact at each host-graft junction must be obtained (Enneking 2001). The conventional freehand technique does not guarantee a wide safe margin nor a satisfying reconstruction (Cartiaux 2008). The emergence of navigation systems has procured a significant improvement in accuracy (Cartiaux 2010). However, their use implies some constraints that overcome their benefits, specifically for long bones. Patient-specific cutting guides become now available for a clinical use and drastically simplify the intra-operative set-up. We present the use of pre-operative assistances to produce patient-specific cutting guides for tumor resection and allograft adjustment. We also report their use in the operative room.

We have developed technical tools to assist the surgeon during both pre-operative planning and surgery. First, the tumor extension is delineated on MRI images. These MRI images are then merged with Computed Tomography scans of the patient. The tumor and the CTscan are loaded in custom software that enables the surgeon to define target (desired) cutting planes around the tumor (Paul 2009) including a user-defined safe margin. Finally, cutting guides are designed on the virtual model of the patient as a mould of the bone surface surrounding the tumor, materialising the desired cutting planes. When required, a massive bone allograft is selected by comparing shapes of the considered patient's bone and available allografts. The resection planes are transferred onto the selected allograft and a second guide is designed for the allograft cutting. The virtually-designed cutting guides are then manufactured by a rapid prototyping machine using biocompatible material. This procedure has been used to excise a local recurrence of a tibial sarcoma and reconstruct the anatomy using a frozen tibial allograft.

The pre-operative planning using virtual models of the patient's bone, tumor and the available allografts enabled the surgeon to localise the tumor, define the desired cutting planes and select the optimal allograft. Patient- and allograft-specific guides have been designed and manufactured. A stable and accurate positioning of guide onto the patient's tibia was made easier thanks to the plate formerly put in place during the previous surgery. An accurate positioning of the allograft cutting guide has been obtained thanks to its design. The obtained reconstruction was optimal with a adjusted allograft that was perfectly fitting the bone defect. The leg alignment was also optimally restored.

Computer assistances for tumor surgery are progressively appearing. We have presented at CAOS 2010 an optical navigation system for tumor resection in the pelvis that was promising. However, such a tool is not well adapted for long bones. We have used patient-specific guides on a clinical case to assess the feasibility of the technique and check its accuracy in the resection and reconstruction. The surgeon has benefited from the 3D planning to define his strategy. He had the opportunity to select the optimal transplant for his patient and plan the same cuttings for the allograft and the patient. During the surgery, guide positioning was straightforward and accurate. The bone cuttings were very easy to perform. The use of custom guides decreases the operating time when compared to the conventional procedure since there is no need for measurements between cutting trajectories and anatomical landmarks. Furthermore, the same cutting planes were performed around the tumor and onto the allograft to obtain a transplant that optimally fills the defect. We recommend the use of such an intra-operative assistance for tumor surgery.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 520 - 520
1 Nov 2011
Docquier P Paul L Cartiaux O Banse X Delloye C
Full Access

Purpose of the study: Resection of sarcomas from the pelvis is particularly difficult because of the risk of injury to the vascular and neurological structures and the complex helicoidal anatomy of the iliac bone. Salvage of the lower limb is preferable but raises the risk of an insufficient resection margin. Imaging procedures (CT scan, magnetic resonance) allow preoperative planning but intraoperative landmarks are not always easy to recognise. Navigation might be highly useful for this type of surgery.

Material and methods: Two patients with a sarcoma of the pelvis (chondrosarcoma and synovial sarcoma) underwent tumour resection using a navigation system. For the second patient, the cut for the bone graft was also navigated enabling reconstruction with a perfectly adjusted graft. The tumour was delimited on each magnetic resonance slice to produce a 3D reconstruction image. This volume was co-recorded on the scanner. The scan with the tumour limits was fed into the navigation machine. Resection planes were chosen taking into account the surgical approach, the type of reconstruction desired, and the healthy margin accepted. These planes were then transposed onto the allograft scan to enable an exactly adapted cut. Plaster prototypes were modelled from the scan of the patient’s pelvis and the allograft scan. The tumour resection and the allograft procedures were repeated on the prototypes using the navigation system.

Results: The navigation system was used successfully as planned preoperatively. The planes of the cuts were as planned. The healthy margin was sufficient in all cases and confirmed at the pathology exam.

Discussion: Navigation enables exact localisation in relation to the tumour throughout the operation. A healthy margin of one centimetre or more can be achieved safely. The allograft cut can be made by another surgeon simultaneously with the tumour resection, saving time. The allograft-host contact surface is improved giving a good congruency with the graft.

Conclusion: Navigation is a very useful tool for resection of pelvic tumours and their reconstruction.