Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 45 - 45
1 Dec 2016
Lalonde S Pichora D Zakani S
Full Access

Cadaveric specimens that have been fresh-frozen and then thawed for use have historically been considered to be the gold standard for biomechanical studies and the closest surrogate to living tissue. However, there are notable issues related to specimen rapid decay in the thawed state as well as infectious hazard to those handling the specimens. Cadaveric specimen preparation using a new phenol-based soft-embalmed method has shown considerable promise in preserving tissue in a prolonged fresh-like state while mitigating the infection risk. In this study, we evaluated the ability of soft-embalmed specimens to replace fresh-frozen specimens in the biomechanical study of flexor tendon repair.

An ex-vivo study was conducted on six cadaveric hands in both a fresh-frozen, thawed state and following embalming with a phenol-based solution. Six different combinations of flexor digitorum profundus (FDP) tendons, from D2 to D5, and flexor pollicis longus (FPL) tendons were used to create two groups of similar composition with 15 tendons each, one group to be tested fresh and the other following embalming. A 5cm length of each flexor tendon was harvested from zone 2 and transversely cut at the mid-section. A modified-Kessler repair was performed on each specimen using 4–0 Fiberwire, with two core sutures and 1cm purchase on each end. Incisions were closed with a running stitch to prepare the specimen for embalming. The same protocol was used to repair and harvest the second group of tendons one month following the perfusion of a phenol-based solution through the vasculature of the hand and forearm. Tendon repair biomechanics were characterised through a ramp loading to failure (rate 1mm/sec), incorporating the 12 mm travel distance of the testing machine. A video-extensometry technique was used to validate machine recordings for the repair site for force at the 2mm gap distance, the ultimate strength, and the mode of failure. Characteristics of the two groups were tested for equivalency using inferential confidence intervals (ICI).

Both fresh and embalmed groups were indistinguishable in both force at 2mm gap (fresh 17.9±4.7N; embalmed 18.1±5.1) and ultimate strength (fresh 43.93±10.0; embalmed 43.7±9.4). With the exception of one specimen with complete suture pull-out, all specimens exhibited partial pull-out as the final mode of failure.

Our study demonstrated that tendon repair characteristics of phenol-embalmed specimens were equivalent to fresh specimens. Post-mortem chemical preservation can indeed preserve both visual and biomechanical characteristics of soft tissues. This study opens new avenues in support of the use of embalmed specimens in medical curricula and surgical training.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 56 - 56
1 Feb 2016
Anas EMA Seitel A Rasoulian A St John P Pichora D Darras K Wilson DW Lessoway V Hacihaliloglu I Mousavi P Rohling R Abolmaesumi P
Full Access

Percutaneous fixation of scaphoid fractures has become popular in recent years, mainly due to its reduced complexity compared to open surgical approaches. Fluoroscopy is currently used as guidance for this percutaneous approach, however, as a projective imaging modality, it provides only a 2D view of the complex 3D anatomy of the wrist during surgery, and exposes both patient and physician to harmful X-ray radiation. To avoid these drawbacks, 3D ultrasound has been suggested to provide imaging for guidance as a widely available, real-time, radiation-free and low-cost modality. However, the blurred, disconnected, weak and noisy bone responses render interpretation of the US data difficult so far. In this work, we present the integration of 3D ultrasound with a statistical wrist model to allow development of an improved ultrasound-based guidance procedure. For enhancement of bone responses in ultrasound, a phase symmetry based approach is used to exploit the symmetry of the ultrasound signal around the expected bone location. We propose an improved estimation of the local phase symmetry by using the local spectrum variation of the ultrasound image. The statistical wrist model is developed through a group-wise registration based framework in order to capture the major modes of shape and pose variations across 30 subjects at different wrist positions. Finally, the statistical wrist model is registered to the enhanced ultrasound bone surfaces using a probabilistic registration approach. Feasibility experiments are performed using two volunteer wrists, and the results are promising and warrant further development and validation to enable ultrasound guided percutaneous scaphoid fracture reduction.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 19 - 19
1 Oct 2014
Venne G Pickell M Pichora D Bicknell R Ellis R
Full Access

Reverse shoulder arthroplasty has a high complication rate related to glenoid implant instability and screw loosening. Better radiographic post-operative evaluation may help in understanding complications causes. Medical radiographic imaging is the conventional technique for post-operative component placement analysis. Studies suggest that volumetric CT is better than use of CT slices or conventional radiographs. Currently, post-operative CT use is limited by metal-artifacts in images. This study evaluated inter-observer reliability of pre-operative and post-operative CT images registration to conventional approaches using radiographs and CT slices in measuring reverse shoulder arthroplasty glenoid implant and screw percentage in bone.

Pre-operative and post-operative CT scans, and post-operative radiographs were obtained from six patients that had reverse shoulder arthroplasty. CT scans images were imported into a medical imaging processing software and each scapula, glenoid implant and inferior screw were reconstructed as 3D models. Post-operative 3D models were imported into the pre-operative reference frame and matched to the pre-operative scapula model using a paired-point and a surface registration. Measurements on registered CT models were done in reference to the pre-operative scapula model coordinate frame defined by a computer-assisted designed triad positioned in respect to the center of the glenoid fossa and trigonum scapulae (medial-lateral, z axis) and superior and inferior glenoid tubercle (superior-inferior, y axis). The orthogonal triad third axis defined the anterior-posterior axis (x axis). A duplicate triad was positioned along the central axis of the glenoid implant model. Using a virtual protractor, the glenoid implant inclination was measured from its central axis and the scapula transverse plane (x - z axes) and version from the coronal plane (y - z axes). Inferior screw percentage in bone was measured from a Boolean intersection operation between the pre-operative scapula model and the inferior screw model.

For CT slices and radiographic measurements, a first 90-degree Cobb angle, from medical records software, was positioned from the trigonum scapulae to the centre of the central peg. Using the 90-degree line as reference, a second Cobb angle was drawn from the most superior to the most inferior point of the glenoid implant for inclination and from of the most anterior to the most posterior point for version. Version can only be measured using CT slices. Screw percentage in bone was calculated from screw length measures collected with a distance-measuring tool from the software.

For testing the inter-observer reliability of the three methods, measures taken by three qualified observers were analysed using an intra-class correlation coefficient (ICC) method.

The 3D registration method showed excellent reliability (ICC > 0.75) in glenoid implant inclination (0.97), version (0.98) and screw volume in bone (0.99). Conventional methods showed poor reliability (ICC < 0.4); CT-slice inclination (0.02), version (0.07), percentage of screw in bone (0.02) and for radiographic inclination (0.05) and percentage screw in bone (0.05).

This CT registration of post-operative to pre-operative novel method for quantitatively assessing reverse shoulder arthroplasty glenoid implant positioning and screw percentage in bone, showed excellent inter-observer reliability compared to conventional 2D approaches. It overcomes metal-artifact limitations of post-operative CT evaluation.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 25 - 25
1 Aug 2013
Lugez E Pichora D Akl S Ellis R
Full Access

Recently, electromagnetic tracking for surgical procedures has gained popularity due to its small sensor size and the absence of line-of-sight restrictions. However, EM trackers are susceptible to measurement noise. Indeed, depending on the environment, measurement uncertainties may vary considerably. Therefore, it is important to characterise electromagnetic measurement systems when used in a fluoroscopy setting. The purpose of our study is to assess decoupled static electromagnetic measurement errors in position and orientation, without adding potential interference, in the presence of fluoroscopic imaging equipment.

Using an Aurora electromagnetic tracking system (Northern Digital, Waterloo, Canada), 5 degrees of freedom measurements were collected in a working space located midway between the source and the receiver of a flat-panel 3D fluoroscope (Innova 4100, GE Healthcare, Buc, France) emitting X-rays. In addition, to determine potential EM distortion from X-rays, electromagnetic measurement accuracies, as a function of position, were compared before, during, and after X-ray emissions. To decouple position and orientation errors, two scaffold devices were designed. Their centre was placed approximately at X = −50, Y = 0, and Z = −300 mm in the EM tracker's global coordinate system. First the positioning scaffold was used to assess the position and orientation measurement uncertainties as a function of position. Next, the orienting scaffold was used to assess the position and orientation measurement uncertainties as a function of orientation. Then, a least-squares method was employed to register the path position measurements to the known geometry of the scaffolds. As a result, the position accuracy was defined as the Euclidean distance between the registered and the ground truth positions. Finally, the orientation accuracy was defined as the difference between two direct angles: the angle between two measured consecutive paths, and the angle of the corresponding ground truth.

When translating the sensor using the positioning scaffold, the resulting position accuracy was characterised by a mean of 3.2 mm. Similarly, when rotating the sensor using the orienting scaffold, the resulting orientation accuracy was characterised by a mean of 1.7 deg. As for the “cross-displacement” errors, the orientation accuracy as a function of position had a mean of 1.8 deg. Likewise, the position as a function of orientation had a mean of 4.0 mm. Position and orientation accuracies – as a function of position, before, during, and after emission of X-rays – indicate that there was no significant interference by the presence of an X-ray beam on the EM measurements.

This work provides evidence that placing the EM system into X-ray beams does not affect EM measurement accuracies. Nevertheless, the fluoroscope itself significantly increases the EM measurement errors. Careful analysis of the EM measurement distribution errors suggests that associated uncertainties are predictable and preventable. In essence, EM tracking is promising for orthopedic procedures that may require the use of a fluoroscope.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 16 - 16
1 Oct 2012
Smith E Al-Sanawi H Gammon B St. John P Pichora D Ellis R
Full Access

Primary internal fixation of uncomplicated scaphoid fractures is growing in popularity due to its advantages over conventional cast fixation. Performing the procedure percutaneously reduces the risk of infection and soft tissue damage, but can be tricky because of the small size and complex three-dimensional (3D) shape of this bone. Computer-assisted navigation has been an invaluable tool in other pin insertion procedures.

This in-vitro study aimed to evaluate two different rendering techniques for our navigation interface: (i) 3D volume rendering of the CBCT image to show digitally-reconstructed radiographs of the anatomy, and (ii) volume-slicing, analogous to CT-images.

As the shape of the scaphoid is highly variable, a plastic model of the wrist was constructed in order to provide consistency that would not be possible in a cadaver-based study. The plastic model featured a removable scaphoid such that a new one was replaced between trials. Three surgeons each performed eight trials using each of the two navigated techniques (yielding a total of 48 trials for analysis). Central placement of scaphoid fixation has been linked with mechanical stability and improved clinical outcomes, thus the surgical goal was to place a K-wire to maximise both depth from the surface and length of the drill path. The wire was drilled through the scaphoid, from distal to proximal, allowing for post-trial analysis of the drill path. A ceiling-mounted OptoTrak Certus camera (Northern Digital Inc., Canada) and a floor-mounted isocentric 3D CBCT C-arm (Innova 4100, GE Healthcare, France) permitted a registration transformation between the tracking and imaging systems to be computed preoperatively, before each trial, using a custom calibration device. Optical local coordinate reference bodies were attached to the wrist model and a custom drill guide for tracking with the Certus camera. During each trial, a 3D spin image of the wrist model was acquired, and rendered according to the technique under study.

For 3D volume rendering, the spin image was rendered as a digitally-reconstructed radiograph (DRR) that could be rotated in three dimensions. In the planning phase, the surgeon positioned a desired drill path on the images. Anterior-posterior and lateral views of the 3D volume rendering were used for navigation during the drilling phase. The real-time orientation of the drill guide was shown relative to these images and the plan on an overhead.

For volume-sliced (VS) navigation, the spin image was volume-rendered and sliced along the principal planes (axial, coronal, sagittal) for planning. A slider interface allowed the surgeon to scroll through the slices in each of the planes, as if they were looking at individual CT slices. Once the desired drill path was positioned, the volume-sliced views were reconfigured to show slices along the oblique planes of the planned path for navigation.

Following all trials, model scaphoids with wire intact were imaged using CT with a slice thickness of 0.625 mm. The CT series were segmented and used to construct 3D digital models of the wire and drilled scaphoid. Algorithms were developed to determine the minimum distance from the centerline of the wire and the scaphoid surface, and to compute the length of the drill path. Screw breach should be avoided as it disrupts the articular surface and may lead to a sequela of cartilage deterioration and osteoarthritic changes. The shortest distance measure was extrapolated to assess whether a standard fixation screw (Accutrak Mini, 1.78 mm radius) would have breached the scaphoid surface. There were three screw breaches noted in the 3D DRR trials, while only one occurred using volume-slicing. The minimum distance from the centerline of the wire to the scaphoid surface can also be thought of as a “safe zone” for screw breach. Although no difference in the mean distance (μ) was noted between groups (μDRR = 2.3 mm, μVS = 2.2 mm), the standard deviation (σ) was significantly higher for the DRR trials (σDRR = 0.50 mm, σVS = 0.37 mm, p < 0.1), suggesting a higher reliability of central placement using VS for navigation. In contrast, the length of the drill paths were significantly longer for the DRR trials (μ = 28.7 mm, σ = 0.66 mm) than for VS-navigation (μ = 28.3 mm, σ = 0.62 mm) at p < 0.1.

The surgical goal was to pick a path that maximised both the length of the path, as well as the minimum distance from the scaphoid surface. Algorithms were developed to find the paths that would maximise: (i) the length and (ii) the distance from the surface of the model scaphoid used in this study. The maximum possible length was 29.8mm (with a minimum distance of 2.2mm from the scaphoid surface), and the maximum distance was 3.3mm (with a length of 27.5mm). Therefore, the set of optimal drill paths had length > 27.5 mm, and distance > 2.8 mm. Of the DRR-navigated trials, 11 were below the minimum optimal depth, and only one trial was below the optimal length; 13 of the 24 trials (54%) were of both optimal length and depth. Of the VS-navigated trials, nine were below the minimal optimal distance, and four were below the minimum optimal length; 11 out of 24 trials (46%) were within both the optimal length and depth.

From this comparative study, we conclude that VS-navigation was superior in locating a central location for the fixation wire, while DRRs were superior in maximising the depth of the drill path. Thus, we propose a hybrid interface, incorporating both volume-slicing and DRRs, in order to maximise the effectiveness of navigation for percutaneous scaphoid pinning.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 556 - 557
1 Nov 2011
Pichora D Kunz M Ma B Rudan JF Ellis RE Alsanawi H
Full Access

Purpose: The purpose of this clinical trial was to investigate the accuracy of a novel method for computer-assisted distal radius osteotomy, in which computer-generated patient-specific plastic guides were used for intra-operative guidance. Our hypothesis was that these guides combine the accuracy and precision of computer-assisted techniques with the ease of use of mechanical guides.

Method: In a consecutive series of 9 patients we tested the accuracy of the proposed method. Prior to surgery, CT scans were obtained of both radii and ulnae in neutral rotation. Three-dimensional virtual models for both the affected and unaffected radius and ulna were created. The models of the unaffected radius and ulna were reflected to serve as a template for the correction. Custom-made software was used to plan the correction. The locations of the distal and proximal drill holes for the plate were saved and the locations of the distal holes before the osteotomy were determined. The design of a patient-specific instrument guide was calculated, into which a mirror image of intra-operative accessible bone structure of the distal radius was integrated. This allowed for unique positioning of the guide intra-operatively. For each planned drill location a guidance hole was incorporated into the guide. A plastic model of the guide was created using a rapid prototyping machine. Intra-operatively, a conventional incision was made and the guide was positioned on the distal end of the radius. The surgeon drilled the holes for the plate screws into the intact radius. The guide was removed and the surgeon performed the osteotomy using the conventional technique and shaved the bone from the distal radius fragment to accommodate the plate. Using the pre-drilled holes the plate was affixed to the distal radius fragment. The distal fragment was reduced until the proximal screw holes in the plate aligned with the pilot holes in the bone. To analyze the accuracy of the intra-operative procedure we compared the post-operative alignment of the radius with the planned alignment. A lateral and an A/P digitally reconstructed radiograph (DRR) of the plan were calculated. These DRRs were used to evaluate the radial inclination, the volar tilt and the ulnar variance of the planned alignment. Post-operative lateral and A/P X-Rays were used to determine the same three post-operative radiographic indices. The post-operative values were compared with the planned values.

Results: We found an average deviation for the radial inclination of 0.5°(StDev 1.8), for the volar tilt of 0.7°(StDev 2.3), and for the ulnar variance of 0.8mm (StDev 1.9).

Conclusion: These results show that the computer-generated instrument guides accurately achieved the planned alignment. The guides were easy to integrate into the surgical workflow and eliminated the need for intra-operative fluoroscopy for guidance of the procedure.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 572 - 573
1 Nov 2011
Pichora D Ma B Kunz M Alsanawi H Rudan J
Full Access

Purpose: We compare the accuracy and precision of patient-specific plastic guides versus computer-assisted navigation for distal radius osteotomy (DRO). We hypothesize that guides would provide similar accuracy and precision compared to computer-assisted surgery, and that they would be faster to use than navigated surgery.

Method: We used CT scans, computer models, and planned corrections of radii from seven patients who had previously received computer-assisted DRO. The planned correction included the locations and directions of the screw holes for the fixation plate on the intact deformed radius. Using computer-assisted technique, the surgeon drills the holes for the fixation plate using computer navigation before performing the osteotomy; after cutting the radius, the plate is fixated to the distal radius, and the distal radius is distracted until the holes in the proximal radius align with the holes of the fixation plate. A patient-specific guide can be manufactured that fits on the intact deformed radius to guide the drilling of the screw holes. The guide is designed so that it mates exactly with the dorsal surface of the radius. Each guide was designed using custom software and manufactured in ABS plastic using a 3D printer. The surgeon places the guide on the radius and uses a metal drill sleeve in each guide hole to guide the drilling of the plate screw holes. We manufactured urethane plastic phantoms of the seven deformed radii. Our laboratory experiment had six surgeons each perform four computer-assisted and four patient-specific guide procedures on the phantom radii; the specimen and type of guidance were randomly chosen. The time from the start of the procedure to when the shaping of the distal radius was completed was recorded; we did not record the time required to cut and fixate the radius because this time does not depend on the type of guidance used. The plated phantoms were assessed for errors in ulnar variance, radial inclination, and volar tilt as compared to the planned correction.

Results: The results for the computer-assisted procedures were: ulnar variance error (−0.2 +/ − 2.0 mm), radial inclination error (−0.9 +/ − 6.1 deg), volar tilt error (−0.9 +/ − 1.9 deg). The results for the customized jig procedures were: ulnar variance error (−0.7 +/ − 0.6 mm), radial inclination error (−1.0 +/ − 1.4 deg), volar tilt error (−0.4 +/ − 2.2 deg). There were no significant differences detected in the means of the measurements (significance level 0.05) using the two-sample t-test. Significant differences were detected in the variances of the ulnar variance and radial inclination errors (significance level 0.05) using Levene’s test. It took (705 +/ − 144 sec) to perform the computer-assisted procedures and (214 +/ − 98 sec) to perform the customized guide procedures. The differences between the means and variances were statistically significant.

Conclusion: Patient-specific guides are as accurate, more precise, and require less time than computer-assisted navigation for DRO.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 91 - 91
1 Mar 2008
Sahajpal D Gambrel J Pichora D
Full Access

This study asseses the biomechanical properties of the Locking Volar T-Plate. It compares the axial load to failure to more traditional plating methods including the T-Plate and Pi-Plate. All three plates were tested for axial load to failure in both a dorsally comminuted model and a highly comminuted model with disruption of both the volar and dorsal cortices. The data in this study indicates may support volar plating for dorsally comminuted distal radius fractures.

The pirpose of this study was to compare the biomechanical properties of three distal radius plates.

The Locking Volar T-Plate performs equally as well regardless of the presence of volar comminution while the other systems do not. It also outperforms both other systems when volar comminution is present.

This study provides biomechanical data of the Volar Locking T-Plate.

Three distal radius plating systems were used on left radii after having either a segmental or dorsal wedge osteotomy performed to simulate severely comminuted and dorsally comminuted distal radius fractures respectively. Group One was plated with an AO stainless steel Pi plate, Group Two with a stainless steel T-plate volarly and Group Three with a stainless steel Locking Volar T-Plate. Specimens in all six of these groups (three groups with each type of osteotomy) were tested in axial loading to determine their load to failure.

The load to failure was significantly higher with the Locking Volar T-Plate than the T-plate (p = 0.001) and Pi plate (p < 0.001) in the severely comminuted model. There was no significant difference between the groups in the dorsally comminuted model. There was no significant difference in the load to failure of the Locking Volar T-Plate between both models and between it’s the load to failure in the severely comminuted model and that of the Pi plate in the dorsally comminuted model.

There has been limited data to date on the Locking Volar T-Plate. Studies, such as this one will provide biomechanical evidence supporting its use.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 53 - 53
1 Mar 2008
Robertson C Pichora D Csongvay S
Full Access

Injection of corticosteroids into the digital flexor tendon sheath is an accepted and effective treatment for stenosing tenosynovitis. However, despite long historical experience with this procedure, there remains no guide in the literature as to the optimal dose of steroid. Furthermore, the accuracy of these injections has not been well established. Using a prospective, randomized, blinded design, this study compares the outcomes of high (20 mg) and low (10 mg) dose depomedrol injection. Furthermore, the accuracy of tendon sheath injections was assessed radiographically. The findings demonstrate increased effectiveness of the higher steroid dose and a significant learning curve associated with intra-thecal injections.

Injection of corticosteroids into the digital flexor tendon sheath is an accepted and effective treatment for stenosing tenosynovitis (trigger finger). However, despite long historical experience with this procedure, there remains no guide in the literature as to the safe and effective dose of steroid to be administered. Furthermore, the accuracy of digital tendon sheath injections has not been well established. One study has suggested that steroid injected outside the tendon sheath was as effective as intra-thecal injection and may result in reduced complications of infection and tendon rupture.

Using a prospective, blinded design, patients were randomized to receive either high (20 mg) or low (10 mg) dose depomedrol injection. The accuracy of the steroid injections was determined radiographically using non-ionic radio-opaque dye. Outcome measures included pain, tenderness, presence of a palpable nodule, triggering, and limitation of activities (work, hobbies, ADLs). Complications such as pain, stiffness, bruising, thinning of the fat or skin, infection and tendon rupture were also recorded.

Higher dose depomedrol (20 mg) was found to be more effective for relieving pain and triggering than lower dose depomedrol (10 mg). No increase in complication rate was encountered. Stenosing tenosynovitis in diabetic patients was markedly less responsive to treatment.

Injection accuracy was found to increase with clinical experience from approximately 50% for beginners to over 90% for experienced hand surgeons. At the time of submission of this abstract, patient numbers (currently forty-one participants) do not allow analysis regarding the effect of injection accuracy on clinical outcome.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 47 - 47
1 Mar 2008
Vasarhelyi T Long W Mayman D Rudan J Pichora D Ellis R
Full Access

A fluoroscopic based computer enhancement system was designed for accurate insertion of guide wires for hip fracture fixation while decreasing fluoroscopy time. A saw bone model was created. The femur was imaged with fluoroscopy and a three-dimensional computer model was created. The femur, fluoroscopy drum, and drill were tracked with an optical tracking device. Guide wire position was planned on the computer model. Using a tracked drill the guide wire was inserted. The number of fluoroscopic images was decreased by 85% and the number of passes required to place the guide wire in acceptable position was decreased by 60% using computer enhanced technique.

A fluoroscopic based computer enhancement system was designed for accurate insertion of guide wires for hip fracture fixation while decreasing fluoroscopy time.

The number of fluoroscopic images and passes required to place the guide wire in acceptable position were decreased using computer enhanced technique. Final guide wire position was not different between the two groups.

Orthopedic surgeons are exposed to radiation from fluoroscopy on a daily basis. This system allowed us to insert guide wires using substantially less fluoroscopy, without compromising accuracy.

An average of 13.5 images were taken for each standard technique trial compared to two images for each computer enhanced trial, representing a reduction in fluoroscopy of 85%. One pass was used for each computer enhanced trial. An average of 2.4 trials was used for standard technique. Average final error was 3.6mm using standard technique and 3.8mm using computer technique.

A saw bone model with a soft tissue sleeve was created. A DRB (dynamic referencing body) was fixed to the femur. The DRB, fluoroscopy drum, and drill were tracked with an optical tracking device. The system created a 3D model from two orthogonal fluoroscopic images. Guide wire position was then planned on the computer model. Using a tracked drill the guide wire was inserted.

Computer enhanced trials were compared to standard techniques in regards to number of fluoroscopic images taken, number of trials to obtain acceptable guide wire position, and accuracy of guide wire placement. Guide wire position was measured on AP and lateral x-rays.

Funding: This project was funded in part through a grant from the Canadian Foundation for Innovation


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 76 - 76
1 Mar 2008
Rudan J Mayman D Pichora D Long W Vasarhelyi T Ellis R
Full Access

Two computer assisted techniques (CT and a fluoro-guide based system) were used to insert the femoral component of the Oxford Unicompartmental Knee arthroplasty. The accuracy and variability of component positioning were compared. Clinical data was collected pre-operatively and is being collected post-operatively. Standing AP and lateral knee X-rays as well as skyline X-rays were collected pre-operatively and post-operative full length AP and lateral femur X-rays were completed in order to measure alignment of the femoral component. Results are showing accurate insertions of the Oxford knee femoral component using both systems.

To review two computer-assisted techniques for inserting Oxford Unicompartmental Knee arthroplasties. CT based and fluro based techniques were compared with regards to accuracy and variability of component positioning.

Currently we are able to use either a CT based system or a fluro based system to accurately insert the femoral component of the Oxford Unicompartmental Knee arthroplasty.

Computer assist techniques are allowing us to perform minimally invasive arthroplasty procedures with great accuracy.

Patients were all seen in a pre-admission clinic where pre-operative clinical survey data were collected. All patients had standing AP and lateral knee X-rays as well as skyline X-rays pre-operatively. Post-perative full length AP and lateral femur X-rays were completed in order to measure alignment of the femoral component. Patients are being followed post-operatively with SF-36, WOMAC, Knee Society Scores, and X-rays. Patients being operated on with the CT based system had pre operative CT scans. Intra-operatively a DRB was fixed to the patient’s femur and the chosen computer assisted technique was used to direct the rotation of the tibial cut as well as the alignment of the femoral cutting jig. To date we have completed seventeen computer assisted Oxford Unicompartmental Knee Arthroplasties. The average error in the AP plane using CT based system was 3.2 degrees and 2.1 degrees for the lateral plane. The average error in the AP plane using the fluro-based system was 2.2 degrees and 1.3 degree for the lateral plane.

Funding: NSERC, IRIS, ORDCF


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 41 - 41
1 Mar 2008
Pichora D Csongvay S Ellis R
Full Access

Previously, we have described a novel, computer assisted technique of osteotomy for distal radius malunion. Laboratory and clinical results demonstrate excellent realignment of the articular fragment, but incomplete correction of the radioulnar convergence and loss of radial bow. This study describes an innovation whereby both the proximal and distal fragments of the malunited radius are manipulated in 3D relative to an external template. Two case studies demonstrate the improve restoration of anatomy with this technique.

The purpose of this study was to develop a method of computer-assisted planning and image guided surgery to restore the normal bow to the malunited radius.

Manipulation of a virtual model of a distal radius malunion can only restore the full anatomical bow to the radius if both the distal and proximal fragments are corrected to match a normal template.

This is a novel method of restoring normal anatomy in which both fragments of a malunited bone are corrected relative to an external normal template.

A previously developed CT-based research software system for conducting computer-assisted distal radius osteotomy allowed three-dimensional manipulation of the distal fragment only, to restore the alignment of the distal articular surface. Results of the first six cases demonstrated that this system did not fully correct the convergence of the radius and ulna with persistent loss of radial bow, although it does provide excellent realignment of the articular fragment. The system was modified to include the ability to manipulate the proximal fragment of the radius. This fragment is rotated and translated to match an external reference template derived from a mirror image CT surface mesh of the opposite forearm. Results of two case studies are evaluated, demonstrating the computer models and post-operative radiographs confirming improved restoration of radial anatomy compared to the previous system.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_I | Pages 80 - 80
1 Mar 2008
Rudan J Mayman D Pichora D Long W Vasarhelyi T Ellis R
Full Access

Two computer assisted techniques (CT and a fluoro-guide based system) were used to insert the femoral component of the Oxford Unicompartmental Knee arthroplasty. The accuracy and variability of component positioning were compared. Clinical data was collected pre-operatively and is being collected post-operatively. Standing AP and lateral knee X-rays as well as skyline X-rays were collected pre-operatively and post-operative full length AP and lateral femur X-rays were completed in order to measure alignment of the femoral component. Results are showing accurate insertions of the Oxford knee femoral component using both systems.

To review two computer-assisted techniques for inserting Oxford Unicompartmental Knee arthroplasties. CT based and fluro based techniques were compared with regards to accuracy and variability of component positioning.

Currently we are able to use either a CT based system or a fluro based system to accurately insert the femoral component of the Oxford Unicompartmental Knee arthroplasty.

Computer assist techniques are allowing us to perform minimally invasive arthroplasty procedures with great accuracy.

Patients were all seen in a pre-admission clinic where pre-operative clinical survey data were collected. All patients had standing AP and lateral knee X-rays as well as skyline X-rays pre-operatively. Post-perative full length AP and lateral femur X-rays were completed in order to measure alignment of the femoral component. Patients are being followed post-operatively with SF-36, WOMAC, Knee Society Scores, and X-rays. Patients being operated on with the CT based system had pre operative CT scans. Intra-operatively a DRB was fixed to the patient’s femur and the chosen computer assisted technique was used to direct the rotation of the tibial cut as well as the alignment of the femoral cutting jig. To date we have completed seventeen computer assisted Oxford Unicompartmental Knee Arthroplasties. The average error in the AP plane using CT based system was 3.2 degrees and 2.1 degrees for the lateral plane. The average error in the AP plane using the fluro-based system was 2.2 degrees and 1.3 degree for the lateral plane.

Funding: NSERC, IRIS, ORDCF


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 4 | Pages 560 - 565
1 Aug 1989
Cooke T Pichora D Siu D Scudamore R Bryant J

Some arthritic knees with varus deformity show excessive valgus angulation of the femoral joint surface with proximal tibia vara. This causes a downward and medial inclination of the articular surfaces in the coronal plane. The patients we studied had a medial shift of the standing load-bearing axis, and arthritic changes mainly in the medial compartment. Some also had lateral tibial subluxation with twisting of the distal femur and proximal tibia in opposite directions. We assessed the articular geometry by precise radiographic analysis, and compared the results with those in normal volunteers and a group of osteoarthritic patients. The prevalence of this type of deformity in our osteoarthritic patients was 11.5%; its recognition allows the use of specific operative correction that may include double osteotomy or the precise orientation of prosthetic components.