Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 55 - 55
1 Oct 2012
Haimerl M Poitzsch L Gneiting S Schubert M Sendtner E Wörner M Springorum R Renkawitz T
Full Access

Incorrect restoration of leg length (LL) and offset is a major source of patient dissatisfaction and dysfunction after total hip arthroplasties (THAs). Evaluations on anterior-posterior x-ray images are state-of-the-art to assess the accuracy of such techniques. However, x-ray based measurements of LL and offset are challenging and limited in terms of accuracy. Within this study, we evaluated the accuracy of such measurements by analysing a series of clinical data. We evaluated the results on the non-treated side, since we know that there should be no significant difference between pre- and postoperative measurements on this side.

A series of 44 consecutive patients was analysed regarding changes in the difference between pre- and post-operative LL and offset measurements. Anterior-posterior x-rays were taken pre- (pre-OP) and post-operatively (post-OP) with a calibration by a scaling ruler (pre-OP) or implant size (post-OP). The LL and offset measurements were performed with a digital planning software based on the teardrop and transischial line. The distance between the teardrop/transischial line and the trochanter minor was measured to assess LL differences. Femoral offset (FO) was calculated as the orthogonal distance between the centre of the femoral head and the proximal shaft axis. Global offset (GO) was calculated as the distance between the inferior aspect of the teardrop figure and the shaft axis along the teardrop line. Descriptive statistics (mean value ± standard deviation) were calculated for the different types of measurements. Statistically significant differences were checked according to a student's t-test (α = 0.05).

The differences between the pre-and post-operative situation was 0.8±3.2 mm for LL, 0.2±3.5 mm for GO, and −0.5±2.5 mm for FO when referencing to the teardrop line and 0.9±4.0 mm (LL) and −0.3±2.7 mm (FO) for the transischial line. The error distributions did not show statistically significant differences when referencing to the teardrop or transischial line. But high differences (0.1±6.6 mm) were found when comparing the LL values (teardrop vs. transischial) case-by-case.

Within this study we demonstrated that x-ray based offset and LL measurements show reasonable inaccuracies. X-ray based evaluations of navigation-based techniques to assist LL and offset restoration cannot produce significantly better results than these analysed limits. That is, even if the navigation technique would be perfectly accurate, the evaluation would not achieve better accuracies than approximately ±3.5 mm for LL, ±3.5 mm for GO, and ±2.5 mm for FO.