Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 281 - 281
1 Jul 2014
Potapova I David E Laschke M Bischoff M Richards R Moriarty T
Full Access

Summary

The two-step labeling protocol using Lysostaphin and bio-orthogonal click chemistry for staining bacteria is described. The click protocol is efficient in labeling staphylococci and is non-toxic. This protocol promises the efficient of infections that are difficult to assess by conventional imaging.

Introduction

Infection diagnostics in clinics is time consuming, invasive and relays on microbiological cultures. New probes and labeling protocols enabling rapid and specific detection of infection in vivo shall improve the situation. We investigated the potential of a new click labeling protocol to detect staphylococci. Azido (N3) - modified Lysostaphin and DIBO (Di-benzocyclooctyne) - dye were used in the two-step bacteria-labeling protocol. N3 and DIBO were the counterparts of the bioorthogonal “click” reaction. In the first step, Lysostaphin-N3 bound to Staphylococcus aureus. In the second step, N3 clicked to DIBO thus achieving S. aureus selective labeling.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 280 - 280
1 Jul 2014
Stadelmann V Potapova I Camenisch K Eberli U Richards G Moriarty F
Full Access

Summary Statement

In vivo microCT allows monitoring of subtle bone structure changes around infected implants in a rat model.

Introduction

The principal causes of orthopedic implant revisions are periprosthetic bone loss and infections. Immediately after implantation, a dynamic process of bone formation and resorption takes place around an orthopedic implant, influencing its mechanical fixation. Despite its importance, the effect of bacteria on the temporal pattern of periprosthetic remodeling is still unknown. The aim of this study was to evaluate the morphological changes of bone adjacent to an implant in the presence and absence of infection using micro computed tomography (microCT).