Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 28 - 28
1 Mar 2021
Bruce D Murray J Whitehouse M Seminati E Preatoni E
Full Access

Abstract

Objectives

1. To investigate the effect of revision total knee replacement (TKR) on gait kinematics in patients with a primary TKR and instability.2. To compare gait kinematics between patients with a well-functioning TKR and those with a primary TKR and symptoms of instability.

Methods

This single-centre observational study is following patients who have had a revision TKR due to knee instability. Data was collected pre- and post-operatively at 8–12 week follow-up. The data was compared to a control group of 18 well-functioning TKR patients. Kinematic gait data was collected during routine clinics using a treadmill-based infrared 3D system (Vicon, Oxford, UK) and a published lower limb marker-set. Patients performed 15 strides at three different speeds: 0.6mph, self-selected, and a ‘slow walk’ normalised to leg length (Froude number 0.09). PROMs questionnaires were collected. NHS ethical approval was obtained.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 46 - 46
1 Mar 2021
Silvestros P Preatoni E Gill HS Cazzola D
Full Access

Abstract

Objectives

Catastrophic neck injuries in rugby tackling are rare (2 per 100,000 players per year) with 38% of these injuries occurring in the tackle. The aim of this study was to determine the primary mechanism of cervical spine injury during rugby tackling and to highlight the effect of tackling technique on intervertebral joint loads.

Methods

In vivo and in vitro experimental data were integrated to generate realistic computer simulations representative of misdirected tackles. MRI images were used to inform the creation of a musculoskeletal model. In vivo kinematics and neck muscle excitations were collected during lab-based staged tackling of the player. Impact forces were collected in vitro using an instrumented anthropometric test device during experimental simulations of rugby collisions. Experimental kinematics and muscle excitations were prescribed to the model and impact forces applied to seven skull locations (three cranial and four lateral). To examine the effects of technique on intervertebral joint loads the model's neck angle was altered in steps of 5° about each rotational axis resulting in a total of 1,623 experimentally informed simulations of misdirected tackles.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 18 - 18
1 Jan 2019
Boyd S Silvestros P Hernandez BA Cazzola D Preatoni E Gill HS Gheduzzi S
Full Access

Digital image correlation (DIC) is rapidly increasing in popularity in biomechanical studies of the musculoskeletal system. DIC allows the re-construction of full field displacement and/or strain maps of the surface of an object. DIC systems typically consist of two cameras focussing on the same region of interest. This constrains the angle between the cameras to be relatively narrow when studying specimens characterised by complex geometrical features, giving rise to concerns on the accuracy of the out of plane estimates of movement.

The aim of this research was to compare the movement profiles of bony segments measured by DIC and by an optoelectronic motion capture system.

Five porcine cervical spine segments (C2-C6) were obtained from the local butcher. These were stripped of all anterior soft tissues while the posterior structures were left intact. A speckle pattern was applied to the anterior aspect of the specimens, while custom made infrared clusters were rigidly attached to the 3 middle vertebral bodies (C3-C5). The specimens were mounted in a custom made impact rig which fully constrained C6 but allowed C2 to translate in the axial direction of the segment. Images were acquired at 4kHz, both for the DIC (Photron Europe Ltd, UK) and motion capture cameras (Qualisys Oqus 400, Sweden). The in-plane and out of plane displacements of each of the VBs were plotted as a function of time and the similarity between the curves thus obtained was analysed using the SPM1D technique which allowed a comparison to be made in terms of t-statistics. No statistical differences were found between the two techniques in all axis of movement, however the out of plane movements were characterised by higher variance which is attributed to the uncertainty arising from the near parallel positioning of the cameras in the experimental set-up.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 5 - 5
1 Jan 2019
Silvestros P Boyd S Hernandez BA Gheduzzi S Gill HS Preatoni E Cazzola D
Full Access

Head collisions in sport can result in catastrophic cervical spine injuries. Musculo-skeletal (MSK) modelling can help analyse the relationship between players' motion, external loading and internal stresses that lead to injury. However, the literature lacks sport specific MSK models. In automotive research the intervertebral disc behaviour has been represented as viscoelastic elements (“bushing”), whose stiffness and damping parameters are often estimated under quasi-static conditions and may lack validity in dynamic impacts. The aim of this study was to develop a validated cervical spine model for axial impacts for future use in the analysis of head-first rugby collisions.

A drop test rig was used to replicate a sub-catastrophic axial head impact. A load of 80 N from 0.5 m was applied to the cranial aspect of a C2-C6 porcine spinal specimen mounted in the neutral position. The 3D motion of C3-C5 vertebras (4 kHz) and the cranial axial load (1 MHz) were measured via motion capture (Qualysis, Sweden) and a uniaxial load cell (RDP Electronics Ltd, UK). Specimen specific models were created in NMSBuilder and OpenSim after the vertebrae geometries were obtained from the segmentation of micro-CT images of the specimens. The compressive viscoelastic properties of four vertebral joints (C2-C3 through to C5-C6) were optimised via a Genetic Algorithm (MATLAB v2016b, The Mathworks Inc) to minimise tracking errors.

The optimisation converged to a solution of 140–49000 kN/m and 2000–8000 Ns/m for stiffness and damping respectively (RMSE=5.1 mm). Simulated joint displacements ranged between 0.09 – 1.75 mm compared to experimental 0.1 – 0.8 mm.

Optimal bushing parameters were higher than previously reported values measured through quasi-static testing. Higher stiffness and damping values could be explained by the higher-dynamics nature of the event analysed related to a different part of the non-linear intervertebral disc load-displacement curve.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 95 - 95
1 Apr 2018
Polak-Kraśna K MacLeod A Fletcher J Whitehouse M Preatoni E Gill H
Full Access

The screw fastening torque applied during bone fracture fixation has a decisive influence on subsequent bone healing. Insufficient screw tightness can result in device/construct instability; conversely, excessive torques risk damaging the bone causing premature fixation failure. This effect is even more prominent in osteoporotic bone, a condition associated annually with almost 9 million fractures worldwide. During fracture fixation, screw tightening torque is applied using subjective feel. This approach may not be optimal for patient”s recovery, increasing risk of fixation failure, particularly in osteoporotic bone, and potentially require revision surgical interventions.

Besides bone density, various factors influence the performance of screw fixation. These factors include bone geometry, cortical thickness and time-dependant relaxation behaviour of the bone. If the influence of screw fastening torque on the bone and relationships between these factors was better understood, the surgical technique could be optimised to reduce the risk of complications.

Within this study, we developed an axisymmetric finite element (FE) model of bone screw tightening incorporating viscoelastic behaviour of the cortical bone such as creep and stress relaxation. The model anticipated time-dependent behaviour of the bone for different bone thickness and density after a typical bone fixation screw had been inserted. The idealised model has been developed based on CT scans of bones with varying densities and inserted screws. The model was validated through a series of experiments involving bovine tibiae (4–5 months) to evaluate the evolution of surface strains with time (Ncorr v1.2). Stress distribution was assessed in photoelastic experiments using acrylic analogues. Relaxation tests have been performed in aqueous environment for up to 48 hours to ensure the relaxation would be complete. The creep behaviour (maximum principal strain) was compared against computational predictions. Our early simulations predicted relaxation strains on the surface of the bone to be 1.1% within 24 hours comparing favourably to 1.3% measured experimentally. Stress distribution patterns were in agreement with photoelastic results.

Using experimentally derived viscoelastic properties, the model has the potential to predict creep and stress relaxation patterns after screw insertion with different fastening torques for bones with varying density and geometry. We aim to develop this into a planning tool providing guidance to surgeons for optimal tightening when using screw fixation, particularly in reduced quality bone.