Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 12 - 12
1 May 2012
Simpson DJ Kendrick B Price AJ Murray D Gill H
Full Access

Introduction

Unicompartmental Knee Replacement (UKR) is an appealing alternative to Total Knee Replacement (TKR) when the patient has isolated compartment osteoarthritis (OA). A common observation post-operatively is radiolucency between the tibial tray wall and the bone. In addition, some patients complain of persistent pain following implantation with a UKR; this may be related to elevated bone strains in the tibia. The aim of this study was to investigate the mechanical environment of the tibia bone adjacent to the tray wall, following UKR, to determine whether this region of bone resorbs, and how altering the mechanical environment affects tibia strains.

Materials and methods

A finite element (FE) model of a cadaver tibia implanted with an Oxford UKR was used in this study, based on a validated model. A single static load, measured in-vivo during a step-up activity was used. There was a 1 mm layer of cement surrounding the keel in the cemented UKR, and the cement filled the cement pocket. In accordance with the operating procedure, no cement was used between the tray wall and bone. For the cementless UKR a layer of titanium filled the cement pocket. An intact tibia was used to compare to the cemented and cementless UKR implanted tibiae. The tibia was sectioned by the tray wall, defining the radiolucency zone (parallel to the vertical tray wall, 2 mm wide with a volume of 782.5 mm3), corresponding to the region on screened x-rays where radiolucencies are observed. Contact mechanics algorithms were used between all contacting surfaces; bonded contact was also introduced between the tray wall and adjacent bone, simulating a mechanical tie between them. Strain energy density (SED), was compared between the intact and implanted tibia for the radiolucency zone. Equivalent strains were compared on the proximal tibia between the intact and implanted tibia models. Forty patients (20 cemented, 20 cementless) who had undergone UKR were randomly selected from a database, and assessed for radiolucency.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 18 - 18
1 May 2012
Snelling SJ Davidson RK Swingler TE Price AJ Clark IM
Full Access

Purpose

To identify genes showing altered expression in osteoarthritic (OA) cartilage and synovium. Dkk3, a member of the Dickoppf family of Wnt signalling inhibitors was overexpressed and this work highlights the potential function of Dkk3 in OA.

Methods

Real-time PCR was used to compare the expression of 270 cytokines, chemokines and their receptors in cartilage and synovium from OA and non-OA patients. Expression of Dkk3 was also measured in ATDC5 cells and in bovine nasal cartilage (BNC) explants treated with inflammatory cytokines. The effect of Dkk3 on hydroxyproline and GAG release was measured in BNC explant cultures.

To assess the distribution of Dkk3 in OA cartilage immunohistochemistry was carried out on anteromedial gonarthrosis specimens. The level of Dkk3 in synovial fluid tricompartmental and unicompartmental cartilage lesions was measured using ELISA.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 9 | Pages 1245 - 1248
1 Sep 2008
Xia Z Murray D Hulley PA Triffitt JT Price AJ

Human articular cartilage samples were retrieved from the resected material of patients undergoing total knee replacement. Samples underwent automated controlled freezing at various stages of preparation: as intact articular cartilage discs, as minced articular cartilage, and as chondrocytes immediately after enzymatic isolation from fresh articular cartilage. Cell viability was examined using a LIVE/DEAD assay which provided fluorescent staining. Isolated chondrocytes were then cultured and Alamar blue assay was used for estimation of cell proliferation at days zero, four, seven, 14, 21 and 28 after seeding. The mean percentage viabilities of chondrocytes isolated from group A (fresh, intact articular cartilage disc samples), group B (following cryopreservation and then thawing, after initial isolation from articular cartilage), group C (from minced cryopreserved articular cartilage samples), and group D (from cryopreserved intact articular cartilage disc samples) were 74.7% (95% confidence interval (CI) 73.1 to 76.3), 47.0% (95% CI 43 to 51), 32.0% (95% CI 30.3 to 33.7) and 23.3% (95% CI 22.1 to 24.5), respectively. Isolated chondrocytes from all groups were expanded by the following mean proportions after 28 days of culturing: group A ten times, group B 18 times, group C 106 times, and group D 154 times.

This experiment demonstrated that it is possible to isolate viable chondrocytes from cryopreserved intact human articular cartilage which can then be successfully cultured.