Management of complex posterior malleolar fractures requires a detailed appreciation of ligamentous and bony anatomy for optimal fracture fixation and restoration of articular congruency. Pre operative planning is vitally important to determine the surgical strategy for complex ankle fractures. We evaluated pre operative planning strategy pre and post implementation of BOAST 12 guidelines (2016) focussing on pre operative CT scans prior to definitive fixation at a major trauma centre. A multi-surgeon retrospective review of prospectively collected data from 2013 to 2018 was performed at a major trauma centre. Patients who had sustained a posterior malleolar fracture and definitive fixation were identified. Information was collated from PICS, PACS, the trauma database and operative notes. 134 patients were identified over a 5 year period who had sustained a posterior malleolar fracture and had definitive fixation. (Pre BOAST guidelines = 61, Post BOAST guidelines = 73). Prior to the implementation of BOAST guidelines ¼ with posterior malleolar fractures did not have a pre operative CT scan (15/61). Post implementation of BOAST 12 90% (66/73)patients with fixation of posterior malleolus fractures had a pre operative CT scan. Posterior malleolus surgery most commonly took place In patients between 18–30 years. Following implantation of BOAST 12 guidelines there was a 15% increase in pre operative CT scanning for ‘complex ankle fractures'. Changes in national guidelines have heavily influenced pre operative planning strategy for ankle fractures at University Hospitals Birmingham. A detailed appreciation of fracture pattern pre operatively helps guide surgical strategy.
The Nottingham Hip Fracture Score (NHFS) is a risk stratifying score that estimates the 30-day and 12-month mortality rates of hip fracture patients. To date, it has only been validated in few centres in the UK. Our study aims to see how our mortality rates compare with those predicted by the NHFS. The Nottingham Hip Fracture Database was reviewed for patients presenting to our unit from August 2012 - March 2013 with a neck of femur fracture. Patient information was obtained from the database and our online electronic patient records for NHFS calculation. Patients with incomplete data were excluded.Background
Methods
Back pain has become a worldwide problem and excessive, repetitive rotation has been shown to cause tissue damage. A sleeping posture similar to that of the foetal position has been suggested to limit unnecessary rotation of the lumbar spine. The Rophi™ cushion, utilises this theory to provide spinal alignment and improved sleeping posture. This study aims to assess the subjective experience and biomechanical effects of the Rophi™ cushion in participants with simple mechanical lower back pain (LBP). Fifteen participants (aged 44 ± 9.7 years) with simple mechanical LBP were recruited using the Red Flags screening form. The kinematics of the pelvis, lower limbs, lumbar and thoracic spine were analysed in six degrees of freedom whilst the participants lay in a semi-foetal position. Visual analogue scales were used to measure participant pain and discomfort levels during sleep pre and post a one week cushion intervention. Kinematic results show the main significant difference in joint angles occurred at the hip in all three planes, and between the lower lumbar region and the pelvis in the coronal plane. Subjective experience showed a reduction in the number of days with poor sleep quality and a significant reduction in frequency and intensity of lower back pain and stiffness when waking.Background
Methods & Results
The fixation of comminuted femoral fractures with intramedullary nails is commonplace but there remains little work on the mechanical ability of the different diameters of nail available to resist bending. What previous work there is has produced conflicting conclusions. The bending stiffness against the intramedullary nail diameter and the extent of the comminuted fracture is clinically important due to the impact on fracture healing and implant failure. Intramedullary nails of differing diameters (10 mm, 11 mm and 13 mm) were loaded axially in fourth generation composite femurs with increasing mid shaft bone defects, namely 3cm, 5cm, 8cm and 10cm bones. The loading versus the displacement was recorded for each nail. A one-way ANOVA analysis demonstrated a significant difference between intramedullary nail diameters and the bending stiffness, with p values of less than 0.012; 3cm mean 12.26 (CI 9.06-15.46) mm, p=0.012; 5 cm mean 10.63 (CI 8.35-12.92) mm, p=<0.001; 8 cm mean 11.04 (CI 8.35-13.74) mm, p=<0.001; 10 cm mean 11.68 (CI 7.86-15.50) mm, p=<0.001. For the 11 mm diameter intramedullary nail, failure occurred at around two times the body weight of an average individual or 1400 to 1800 N. A repeated measure ANOVA analysis of the effect of the increasing bone defect showed a mixed picture, with a significant difference between the 5 cm and 8 cm gap and only a trend towards significance between 5 cm and 10 cm. Caution should be advised when considering using a cannulated femoral intramedullary nail in a patient with a fracture gap of greater than 5 cm. Further, the mechanical effect of comminuted fractures treated with nails suggests reduced stiffness with increasing length of fracture gap although the picture is complex and explains the divergence of research conclusions.
Several authors have used 3D motion analysis to measure upper limb kinematics, but none have focused solely on wrist movements, in six degrees of freedom, during activities of daily living (ADL). This study aimed to determine the role of the different planar wrist movements during three standardised tasks, which may be affected by surgical procedures. Nine volunteers (age range 22-45) were recruited and each participant performed three simulated ADLs: using a door lever, a door knob and opening/closing a jam jar. The ADLs were simulated using a work-sim kit on an isokinetic dynamometer. Motion analysis was performed by a 10-camera Oqus system (Qualisys Medical AB, Gothenburg, Sweden). All raw kinematic data were exported to Visual3D (C-Motion Inc.), where the biomechanical model was defined and joint kinematics calculated. Table 1 shows a similar range of radial-ulnar deviation and flexion-extension as previous studies. However a substantial amount of wrist rotation also occurred in all tasks. This was significantly greater when using the door lever compared with the door knob and jam jar tasks. Previous studies have stated that a negligible degree of rotation occurs at the wrist. This study found a maximum mean of 31.7 degrees of wrist rotation. This indicates that considerable rotational movement occurs at the wrist during certain functional tasks. Surgical approaches and clinical pathology may disrupt structures responsible for rotational stability. Further investigation of this rotational component of carpal movement during additional ADLs is proposed in both normal and clinical subjects, to explore the potential relationship between carpal surgery and rotational laxity.