Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 15 - 15
1 Dec 2016
Morelli I Drago L George D Gallazzi E Scarponi S Romanò C
Full Access

Aim

The induced membrane technique (IMT) or Masquelet technique is a two-step surgical procedure used to treat bony defects (traumatic or resulting from tumoral resections) and pseudo arthroses, even caused by infections. The relatively small case series reported, sometimes with variants to the original technique, make it difficult to assess the real value of the technique. Aim of this study was then to undertake a systematic review of the literature with a particular focus on bone union, infection eradication and complication rates.

Method

A systematic review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Individual Patient Data (PRISMA-IPD) guidelines. PubMed and other medical databases were searched using “Masquelet technique” and “induced membrane technique” keywords. English, French or Italian written articles were included if dealing with IMT employed to long bones in adults and reporting at least 5 cases with a 12 months minimum follow-up. Clinical and bone defect features, aetiology, surgical data, complications, re-interventions, union and infection eradication rates were recorded into a database. Fischer's exact test and unpaired t-test were used for the statistical analysis on the individual patient's data.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 43 - 43
1 Dec 2016
Romanò C Malizos K Blauth M Capuano N Mezzoprete R Logoluso N Drago L
Full Access

Aim

Aim of this study is to present the first clinical trial on an antibiotic-loaded fast-resorbable hydrogel coating*, in patients undergoing internal osteosynthesis for closed fractures.

Method

In this prospective, multi-centre, randomized, controlled, prospective study, a total of 260 patients were randomly assigned, in five European orthopaedic centres, to receive the antibiotic-loaded DAC coating or to a control group, without coating. Pre- and post-operative assessment of laboratory tests, wound healing, clinical scores and x-rays were performed at fixed time intervals.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 80 - 80
1 Dec 2016
Malizos K Capuano N Mezzoprete R D'Arienzo M Van Der Straeten C Drago L Romanò C
Full Access

Aim

Infection remains among the first reasons of failure of joint prosthesis. According to various preclinical reports, antibacterial coatings of implants may prevent bacterial adhesion and biofilm formation. Aim of this study is to present the first clinical trial on an antibiotic-loaded fast-resorbable hydrogel coating*, in patients undergoing hip or knee prosthesis.

Method

In this multi-center, randomized, prospective, study, a total of 380 patients, scheduled to undergo primary or revision total hip or knee joint replacement, using a cementless or a hybrid implant, were randomly assigned, in six European orthopedic centers, to receive the antibiotic-loaded DAC coating or to a control group, without coating. Pre- and post-operative assessment of clinical scores, wound healing, laboratory tests and x-ray were performed at fixed time intervals.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 33 - 33
1 Dec 2016
Trentinaglia MT Drago L Logoluso N Morelli I Romanò C
Full Access

Aim

Implant-related infections, including peri-prosthetic joint infection (PJI) and infected osteosynthesis, are biofilm-related. Intra-operative diagnosis and pathogen identification is currently considered the diagnostic benchmark; however the presence of bacterial biofilm(s) may have a detrimental effect on pathogen detection with traditional microbiological techniques. Sonication and chemical biofilm debonding have been proposed to overcome, at least partially, this issue, however little is known about their possible economical impact. Aim of this study was to examine direct and indirect hospital costs connected with the routine use of anti-biofilm microbiological techniques applied to hip and knee PJIs.

Method

In a first part of the study, the “Turn Around Time (TAT)” and direct costs comparison between a system to find bacteria on removed prosthetic implants*, a closed system for intra-operative tissue and implant sampling, transport and anti-biofilm processing, versus sonication has been performed. An additional analysis of the estimated indirect hospital costs, resulting from the diagnostic accuracy of traditional and anti-biofilm microbiological processing has been conducted.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 138 - 138
1 Dec 2015
Malizos K Scarponi S Simon K Blauth M Romanò C
Full Access

Infection is among the first reasons for failure of orthopedic implants. Various antibacterial coatings for implanted biomaterials are under study, but only few technologies are currently available in the clinical setting. Previous studies showed the in vitro and in vivo efficacy and safety of a fast resorbable (<96 h) hyaluronic and polylactic acid based hydrogel, loaded with antibiotic or antibiofilm agents (DAC®, Novagenit Srl, Mezzolombardo, TN). Aim of this study is to report the results of the largest clinical trial in trauma and orthopedic patients.

In this prospective, controlled, study, a total of 184 patients (86 treated with internal osteosinthesis for closed fractures and 98 undergoing cementless total hip or knee joint prosthesis) were randomly assigned in three European orthopaedic centers to receive antibiotic-loaded DAC coating or to a control group, without coating. Pre- and post-operative assessment of laboratory tests, wound healing (ASEPSIS score), clinical score (SF-12 score) and x-rays were performed at fixed time intervals. Statistical analysis was performed with Fisher exact test or Student's t test. Significance level was set at p<0.05.

The study was approved by the local Ethical Committee and all patients provided a written informed consent.

On average, wound healing, clinical scores, laboratory tests and radiographic findings did not show any significant difference between the two-groups at a mean 12 months follow-up (min: 6, max: 18 months).

Four surgical site infections and two delayed union were observed in the control group compared to none in the treated group.

No local or systemic side effects, that could be related to DAC hydrogel coating, were noted and no detectable interference with bone healing or osteointegration could be found

This is the largest study, with the longest follow-up, reporting on clinical results after the use of a fast-resosrbable anti-bacterial hydrogel coating for orthopaedic and trauma implants. Our results show the safety of the tested coating in different indications; although not statistically significant, the data also show a trend towards surgical site infection reduction, as previously demonstrated in the animal models.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 88 - 88
1 Dec 2015
De Vecchi E Signori V Bortolin M Romanò C Drago L
Full Access

Prosthetic implants, periprosthetic and osteoarticular tissues are specimens of choice for diagnosis of bone and joint infections including prosthetic joint infections (PJIs). However, it is widely known that cultures from prostheses and tissues may fail to yield microbial growth in up to one third of patients. In the recent past, treatment of prosthetic implants have been optimized in order to improve sensitivity of microbiological cultures, while less attention has been addressed to tissue samples. For these latter homogenization is considered the best procedure, but it is quite laborious, time-consuming and it is not always performed in all laboratories. Dithiothreitol (DTT) has been proposed as an alternative treatment to sonication for microbiological diagnosis of PJIs. In this study, we evaluated the applicability of MicroDTTect treatment, a closed system developed for transport and treatment of tissues and prosthetic implants with DTT.

For evaluation of applicability of MicroDTTect to tissue specimens, samples (tissues and, in case of PJI, prosthetic implants) from 40 patients (12 PJIs and 5 osteomyelitis and 23 not-infected) were evaluated. MicroDTTect system consists of a sterile plastic bag containing a reservoir which allows for release of a 0.1% (v:v) DTT solution, once the sample is placed into the bag. Comparison of MicroDTTect treatment of prostheses with sonication included samples from 30 patients (14 with aseptic loosening of the prosthesis and 16 with PJIs). Of two tissue samples from the same region, one was placed into MicroDTTect bag and the other was collected in a sterile container with addition of sterile saline. After agitation and centrifugation of the eluate, aliquots of the pellets were plated on agar plates and inoculated into broths which were incubated for 48 hrs and 15 days, respectively.

Treatment of prosthetic implants with MicroDTTect showed a higher specificity and sensitivity than sonication (specificity 92.8% vs 85.7%; sensitivity: 87.5% vs 75.0 % DTT vs sonication). When used for tissue treatment, MicroDTTect showed a sensitivity of 82.3% and a specificity of 97% which were higher than that observed when saline was used (sensitivity: 64.7%; specificity 91%).

Treatment of tissues and prosthetic implants with MicroDTTect may be a practicable strategy to improve microbiological diagnosis of osteoarticular infections, reducing sample manipulation and therefore limiting sample contamination. Moreover, use of MicroDTTect does not require dedicated instrumentation, and is time and cost saving.