A stiff spine leads to increased demand on the hip, creating an increased risk of total hip arthroplasty (THA) dislocation. Several authors propose that a change in sacral slope of ≤10° between the standing and relaxed-seated positions (ΔSSstanding→relaxed-seated) identifies a patient with a stiff lumbar spine and have suggested use of dual-mobility bearings for such patients. However, such assessment may not adequately test the lumbar spine to draw such conclusions. The aim of this study was to assess how accurately ΔSSstanding→relaxed-seated can identify patients with a stiff spine. This is a prospective, multi-centre, consecutive cohort series. Two-hundred and twenty-four patients, pre-THA, had standing, relaxed-seated and flexed-seated lateral radiographs. Sacral slope and lumbar lordosis were measured on each functional X-ray. ΔSSstanding→relaxed-seated seated was determined by the change in sacral slope between the standing and relaxed-seated positions. Lumbar flexion (LF) was defined as the difference in lumbar lordotic angle between standing and flexed-seated. LF≤20° was considered a stiff spine. The predictive value of ΔSSstanding→relaxed-seated for characterising a stiff spine was assessed. A weak correlation between ΔSSstanding→relaxed-seated and LF was identified (r2= 0.15). Fifty-four patients (24%) had ΔSSstanding→relaxed-seated ≤10° and 16 patients (7%) had a stiff spine. Of the 54 patients with ΔSSstanding→relaxed-seated ≤10°, 9 had a stiff spine. The positive predictive value of ΔSSstanding→relaxed-seated ≤10° for identifying a stiff spine was 17%. ΔSSstanding→relaxed-seated ≤10° was not correlated with a stiff spine in this cohort. Utilising this simplified approach could lead to a six-fold overprediction of patients with a stiff lumbar spine. This, in turn, could lead to an overprediction of patients with abnormal spinopelvic mobility, unnecessary use of dual mobility bearings and incorrect targets for component alignment. Referring to patients ΔSSstanding→relaxed-seated ≤10° as being stiff can be misleading; we thus recommend use of the flexed-seated position to effectively assess pre-operative spinopelvic mobility.
Apparently well-orientated total hip replacements (THR) can still fail due to functional component malalignment. Previously defined “safe zones” are not appropriate for all patients as they do not consider an individual's spinopelvic mobility. The Optimized Positioning System, OPSTM (Corin, UK), comprises preoperative planning based on a patient-specific dynamic analysis, and patient-specific instrumentation for delivery of the target component alignment. The aim of this study was to determine the early revision rate from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) for THRs implanted using OPSTM. Between January 4th 2016 and December 20st 2017, a consecutive series of 841 OPSTMcementless total hip replacements were implanted using a Trinity acetabular cup (Corin, UK) with either a TriFit TS stem (98%) or a non-collared MetaFix stem (2%). 502 (59%) procedures were performed through a posterior approach, and 355 (41%) using the direct superior approach. Mean age was 64 (range; 27 to 92) and 51% were female. At a mean follow-up of 15 months (range; 3 to 27), the complete list of 857 patients was sent to the AOANJRR for analysis.Introduction & aims
Method
It is well accepted that larger heads provide more stability in total hip arthroplasty. This is due to an increase in jump height providing increased resistance to subluxation. However, other implant parameters also contribute to the bearing's stability. Specifically, the liner's rim design and the centre of rotation relative to the liner's face. Both these features contribute to define the Cup Articular Arc Angle (CAAA). The CAAA describes the degree of dysplasia of the acetabular liner, and plays an important role in defining the jump height. The aim of this study was to determine the difference in jump height between bearing materials with a commonly used acetabular implant system. From 3D models of the Trinity acetabular implant system (Corin, UK), the CAAA was measured in CAD software (SolidWorks, Dassault Systems, France) for the ceramic, poly and modular dual mobility (DM) liners, for cup sizes 46mm to 64mm. The most commonly used bearing size was used in the analysis of each cup size. For the ceramic and poly liners, a 36mm bearing was used for cups 50mm and above. For the 46mm and 48mm cups, a 32mm bearing was used. The DM liners were modelled with the largest head size possible. Using a published equation, the jump height was calculated for each of the three bearing materials and each cup size. Cup inclination and anteversion were kept constant.Introduction
Methods
Femoral component loosening is one of the most common failure modes in cementless total hip arthroplasty (THA). Patient age, weight, gender, osteopenia, stem design and Dorr-C bone have all been proposed as risk factors for poor fixation and subsequent stem subsidence and poor outcome. With the increased popularity of CT-based assistive technologies in THA, (Stryker MAKO and Corin OPSTM), we sought to develop a technique to predicted femoral stem fixation using pre-operative CT. Fourteen patients requiring THA were randomly selected from a previous study investigating component alignment. Mean age was 64 (53 to 76), and 57% were female. All patients received pre-operative CT for 3D dynamic templating (OPSTM), and a TriFit stem and Trinity cup (Corin, UK) implanted through a posterior approach. Post-operatively, patients received an immediate CT and AP x-ray prior to leaving the hospital, and a 1-year follow-up x-ray. On both the immediate post-op x-ray and 1-year follow-up x-ray, the known cup diameter was used to scale the image. On both images, the distance between the most superior point of the greater trochanter and the shoulder of the stem was measured. The difference was recorded as stem subsidence. Subsidence greater than 4mm was deemed clinically relevant. The post-operative CT was used to determine the precise three-dimensional placement of the stem immediately after surgery by registering the known 3D implant geometry to the CT. For each patient, the achieved stem position from post-op CT was then virtually implanted back into the pre-operative OPSTM planning software. The software provides a colour map of the bone density at the stem/bone interface using the Hounsfield Units (HU) of each pixel of the CT [Fig. 1]. Blue represents low density bone transitioning through to green and then red (most dense).Introduction
Methods
Variation in resection thickness of the femur in Total Knee Arthroplasty (TKA) impacts the flexion and extension tightness of the knee. Less well investigated is how variation in patient anatomy drives flexion or extension tightness pre- and post- operatively. Extension and flexion stability of the post TKA knee is a function of the tension in the ligaments which is proportional to the strain. This study sought to investigate how femoral ligament offset relates to post-operative navigation kinematics and how outcomes are affected by component position in relation to ligament attachment sites. A database of TKA patients operated on by two surgeons from 1-Jan-2014 who had a pre-operative CT scan were assessed. Bone density of the CT scan was used to determine the medial and lateral collateral attachments. Navigation (OmniNav, Raynham, MA) was used in all surgeries, laxity data from the navigation unit was paired to the CT scan. 12-month postoperative Knee Osteoarthritis and Outcome Score (KOOS) score and a postoperative CT scan were taken. Preoperative segmented bones and implants were registered to the postoperative scan to determine change in anatomy. Epicondylar offsets from the distal and posterior condyles (of the native knee and implanted components), resections, maximal flexion and extension of the knee and coronal plane laxity were assessed. Relationships between these measurements were determined. Surgical technique was a mix of mechanical gap balancing and kinematically aligned knees using Omni (Raynham, MA) Apex implants.Introduction
Method
Patient specific instrumentation (PSI) is a useful tool to execute pre-operatively planned surgical cuts and reduce the number of trays in surgery. Debate currently exists around improved accuracy, efficacy and patient outcomes when using PSI cutting guides compared to conventional instruments. Unicompartmental Knee Arthroplasty (UKA) revision to Total Knee Arthroplasty (TKA) represents a complex scenario in which traditional bone landmarks, and patient specific axes that are routinely utilised for component placement may no longer be easily identifiable with either conventional instruments or navigation. PSI guides are uniquely placed to solve this issue by allowing detailed analysis of the patient morphology outside the operating theatre. Here we present a tibia and femur PSI guide for TKA on patients with UKA. Patients undergoing pre-operative planning received a full leg pass CT scan. Images are then segmented and landmarked to generate a patient specific model of the knee. The surgical cuts are planned according to surgeon preference. PSI guide models are planned to give the desired cut, then 3D printed and provided along with a bone model in surgery. PSI-bone and PSI-UKA contact areas are modified to fit the patient anatomy and allow safe placement and removal. The PSI-UKA contact area on the tibia is defined across the UKA tibial tray after the insert has been removed. Further contact is planned on the tibial eminence if it can be accurately segmented in the CT and the anterior superior tibia on the contralateral compartment, see example guide in Figure 1. Contact area on the femur is defined on the superior trochlear groove, native condyle, femur centre and femoral UKA component if it can be accurately segmented in the CT. Surgery was performed with a target of mechanical alignment using OMNI APEX PS implants (Raynham, MA). The guide was planned such that the OMNI cut block could be placed on the securing pins to translate the cut. Component alignment and resections values were calculated by registering the pre-operative bones and component geometries to post-operative CT images.Introduction & aims
Method
Appropriate femoral stem anteversion is an important factor in maintaining stability and maximizing the performance of the bearing after total hip replacement (THR). The anteversion of the native femoral neck has been shown to have a significant effect on the final anteversion of the stem, particularly with a uncemented femoral component. The aim of this study was to quantify the variation in native femoral neck anteversion in a population of patients requiring total hip replacement. Pre-operatively, 1215 patients received CT scans as part of their routine planning for THR. Within the 3D planning, each patient's native femoral neck anteversion, measured in relation to the posterior condyles of the knee, was determined. Patients were separated into eight groups based upon gender and age. Males and females were divided by those under 55 years of age, those aged 55 to 64, 65 to 74 and those 75 or older.Introduction
Methods
Knee ligament laxity and soft tissue balance are important pre- and intra- operative balancing factors in total knee arthroplasty (TKA). Laxity can be measured pre-operatively from short-leg radiographs using a stress device to apply a reproducible force to the knee, whereas intra-operative laxity is routinely measured using a navigation system in which a variable surgeon-applied force is applied. The relationship between these two methods and TKA outcome however, has not been investigated. This study aims to determine how intra-operative assessments of laxity relate to functional radiographic assessments performed on pre-operatively. We also investigate how laxity relates to short-term patient-reported outcomes. A prospective consecutive study of 60 knees was performed. Eight weeks prior to surgery, patients had a CT scan and functional radiographs captured using a Telos stress device (Metax, Germany). This device applies a force to the knee joint while bracing the hip and ankle causing either a varus or valgus response. 3D bone models were segmented from the CT scan and landmarked to generate patient specific axes and alignments. Individual bone models were registered to the 2D stressed X-rays in flexion and extension. Reference axes identified on the registered 3D bone models were used to measure the coronal plane laxity. These laxity ranges were compared with those measured by a navigation system (OMNINAV, OMNI Life Science, MA) used during surgery, and Knee Injury and Osteoarthritis Outcome Scores (KOOS) captured 6 months postoperatively.Introduction
Method
Resurfacing of the patella is an important part of most TKA operations, usually using an onlay technique. One common practice is to medialise the patellar button and aim to recreate the patellar offset, but most systems do not well control alignment of the patella button. This study aimed to investigate for relationships between placement and outcomes and report on the accuracy of patella placement achieved with the aid of a patella Patient Specific Guide (PSG). A databse of TKR patients operated on by five surgeons from 1-Jan-2014 who had a pre-operative and post-operative CT scan and 6-month postoperative Knee Osteoarthritis and Outcome (KOOS) scores were assessed. Knees were excluded if the patella was unresurfaced or an inlay technique was used. All knee operations were performed with the Omni Apex implant range and used dome patella buttons. A sample of 40 TKRs had a patella PSG produced consisting of a replication of an inlay barrel shaped to fit flush to the patient's patella bone. The centre of the quadriceps tendon on the superior pole of the patella bone and the patella tendon on the inferior were landmarked. 3D implant and bone models from the preoperative CT scans were registered to the post-operative CT scan. The flat plane of the implanted patella button was determined and the position of the button relative to the tendon attachments calculated. Coverage of the bone by the button and patellar offset reconstruction were also calculated. The sample of 40 TKRs for whom a patella PSG was produced had their variation in placement assessed relative to the wider population sample. All surgeries were conducted with Omni Apex implants using a domed patella.Introduction & aims
Method
The pelvis moves in the sagittal plane during functional activity. These movements can have a detrimental effect on functional cup orientation. The authors previously reported that 17% of total hip replacement (THR) patients have excessive pelvic rotation preoperatively. This increased pelvic rotation could be a risk factor for instability and edge-loading in both flexion and/or extension. The aim of this study was to investigate how gender, age and lumbar spine stiffness affects the number of patients at risk of excessive sagittal pelvic rotation. Pre-operatively, 3428 patients had their pelvic tilt (PT) and lumbar lordotic angle (LLA) measured in three positions; supine, standing and flexed-seated, as part of routine planning for THR. The pelvic rotation from supine-to-standing and from supine-to-seated was determined from the difference in pelvic tilt measurements between positions. Lumbar flexion was determined as the difference between LLA standing and LLA when flexed-seated. Patients were stratified into groups based upon age, gender and lumbar flexion. The percentage of patients in each group with excessive pelvic rotation, defined by rotation ≥13° in a detrimental direction, was determined.Introduction
Method
The Intellijoint HIP system is a mini-optical navigation system designed to intraoperatively assist with cup orientation, leg length and offset in total hip replacement (THR). As with any imageless navigation system, acquiring the pelvic reference frame intraoperatively requires assumptions. The system does however have the ability to define the native acetabular orientation intra-operatively by registering 3-points along the bony rim. In conjunction with a pre-operative CT scan, the authors hypothesised that this native acetabular plane could be used as an intraoperative reference to achieve a planned patient-specific cup orientation. Thirty-eight THR patients received preoperative OPSTM dynamic planning (Optimized Ortho, Sydney). On the pre-operative 3D model of each patient's acetabulum, a 3-point plane was defined by selecting recognisable features on the bony rim. The difference in inclination and anteversion angles between this native 3-point reference plane and the desired optimal orientation was pre-operatively calculated, and reported to the surgeon as “adjustment angles”. Intraoperatively, the surgeon tried to register the same 3-points on the bony rim. Knowing the intraoperative native acetabular orientation, the surgeon applied the pre-calculated adjustment angles to achieve the planned patient specific cup orientation. All patients received a post-operative CT scan at one-week and the deviation between planned and achieved cup orientation was measured. Additionally, the cup orientation that would have been achieved if the standard Intellijoint pelvic acquisition was performed was retrospectively determined.Introduction
Method
Appropriate prosthetic alignment is an important factor in maintaining stability and maximising the performance of the bearing after total hip replacement (THR). With a cementless component, the anteversion of the native femur has been shown to influence the anteversion of the prosthetic stem. However, the extent to which anteversion of a cementless stem can be adjusted from the native anteversion has seldom been reported. The aim of this study was to investigate the difference between native and stem anteversion with two different cementless stem designs. 116 patients had 3-dimensional templating as part of their routine planning for THR (Optimized Ortho, Sydney). 96 patients from 3 surgeons (AS, JB, SM) received a blade stem (TriFit TS, Corin, UK) through a posterior approach. 18 patients received a fully HA-coated stem (MetaFix, Corin, UK) through a posterior approach by a single surgeon (WB). The anteversion of the native femoral neck was measured from a 3D reconstruction of the proximal femur. All patients received a post-operative CT scan which was superimposed onto the pre-op CT scan. The difference between native and achieved stem anteversion was then measured. As surgeons had differing philosophies around target stem anteversion, the differences amongst surgeons were also investigated.Introduction
Method
Correct prosthetic alignment is important to the longevity and function of a total hip replacement (THR). With the growth of 3-dimensional imaging for planning and assessment of THR, the importance of restoring, not just leg length and medial offset, but anterior offset has been raised. The change in anterior offset will be influenced by femoral anteversion, but there are also other factors that will affect the overall change after THR. Consequently, the aim of this study was to investigate the relationship between anterior offset and stem anteversion to determine the extent to which changing anteversion influences anterior offset. Sixty patients received a preoperative CT scan as part of their routine planning for THR (Optimized Ortho, Sydney). All patients received a Trinity cementless shell and a cemented TaperFit stem (Corin, UK) by the senior author through an anterolateral approach. Stem anteversion was positioned intraoperatively to align with cup anteversion via a modified Ranawat test. Postoperatively, patients received a CT scan which was superimposed onto the pre-op CT scan. The difference between native and achieved stem anteversion was measured, along with the 3-dimensional change in head centre from pre-to post-op. Finally, the relationship between change in stem anteversion and change in anterior offset was investigated.Introduction & aims
Method
The posterior condylar axis of the knee is the most common reference for femoral anteversion. However, the posterior condyles, nor the transepicondylar axis, provide a functional description of femoral anteversion, and their appropriateness as the ideal reference has been questioned. In a natural standing positon, the femur can be internally or externally rotated, altering the functional anteversion of the native femoral neck or prosthetic stem. Uemura et al. found that the femur internally rotates by 0.4° as femoral anteversion increases every 1°. The aim of this study was to assess the relationship between femoral anteversion and the axial rotation of the femur before and after total hip replacement (THR). Fifty-nine patients had a pre-operative CT scan as part of their routine planning for THR. The patients were asked to lie in a comfortable position in the CT scanner. The internal/external rotation of the femur, described as the angle between the posterior condyles and the CT coronal plane, was measured. The native femoral neck anteversion, relative to the posterior condyles, was also determined. Identical measurements were performed at one-week post-op using the same CT methodology. The relationship between femoral IR/ER and femoral anteversion was studied pre- and post-op. Additionally, the effect of changing anteversion on the axial rotation of the femur was investigated.Introduction
Method
Restoration of the femoral head centre during THR should theoretically improve muscle function and soft tissue tension. The aim of this study was to assess whether 3D planning and an accurately controlled neck osteotomy could help recreate hip anatomy. 100 consecutive THR patients received OPSTM 3D femoral planning. For each patient a 3D stem+head position was pre-operatively planned which restored the native head height, restored global offset after cup medialisation and reproduced anterior offset, in the superior-inferior, medial-lateral and anterior-posterior directions respectively. The femoral osteotomy was planned preoperatively and controlled intra-operatively with a patient specific guide. All procedures were performed through a posterior approach with a TriFit/Trinity uncemented implant combination. Post-op implant position was determined from CT.Introduction
Methods
The pelvis is not a static structure. It rotates in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic tilt have a substantial effect on the functional orientation of the acetabulum. The aim of this study was to quantify the changes in sagittal pelvic position between three functional postures. Pre-operatively, 1,517 total hip replacement patients had their pelvic tilt measured in 3 functional positions – standing, supine and flexed seated (point when patients initiate rising from a seated position). Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography.Introduction
Methodology
Hip arthroplasty surgeons have various bearing choices to make on behalf of their patients. We make those choices based on our knowledge of pre-clinical wear testing data and the outcome of clinical and radiological follow-up studies. The initial use of conventional polyethylene revealed limitations in its use in younger patients. Modern highly crosslinked polyethylene is a vastly improved bearing surface that means less wear and its consequences. Despite this, registry data still suggests that loosening, lysis and dislocation are problematic causes of implant failure. The functional success of hip replacement surgery, the ageing population and younger patients requesting arthroplasty means we should predict ongoing issues consequent to wear related events even with the newer polyethylenes. Ceramic-on-ceramic bearings surfaces have a long history of successful clinical use. The benefits of ceramic bearings are its superior wear characteristics, the minimal biological response to the ceramic wear products and the ability of ceramics to be offered in larger head sizes. Its limitations have been reports of fracture and squeaking. Fourth generation ceramic articulations have reduced the fracture incidence. Squeaking has been reported to occur in 3% to 20% in different series but revision for squeaking is extremely, low suggesting it is not a significant clinical problem. Edge loading occurs in most hip articulations and is thought to be the primary mechanism in the squeaking event. Modern methodologies of “functional” implant orientation may reduce the incidence of squeaking. While wear and its consequences remain significant issues in hip arthroplasty, the future will require a bearing with reduced wear and biologically inert wear products. This bearing exists already. “The future is now”.
The primary purpose of Total Hip Arthroplasty (THA), aside from pain relief, is to restore hip biomechanics such that the patient experiences no discernible functional deficit, while also providing an environment conducive to implant longevity. Key factors in determining a successful THA include achieving the desired pre-operative femoral offset and leg length, as well as the restoration of range of motion (ROM). Minor leg length discrepancies (LLDs), less than a centimetre, are common after THA and usually well tolerated. However, in some patients, even these small discrepancies are a source of dissatisfaction. More significant discrepancies can be a risk factor for more serious concerns such as nerve injury, abnormal gait and chronic pain. The level of the femoral neck osteotomy is a critical step in reproducing a planned femoral stem position. Frequently the femoral osteotomy is too high and can lead to an increase in leg length and varus stem positioning. If the desired implant positions are identified from preoperative 3D templating, a planned femoral osteotomy can be used as a reference to recreate the correct leg length and offset. The aim of this study was assess the accuracy of a 3D printed patient-specific guide for delivering a pre-planned femoral neck osteotomy. A consecutive series of 33 patients, from two surgeons at a single institution, were sent for Trinity OPS pre-operative planning (Optimized Ortho, Australia). Trinity OPS is a pre-operative, dynamic, patient-specific modelling system for acetabular and femoral implant positioning. The system requires a pre-operative CT scan which allows patient specific implant sizing as well as positioning. Once the preoperative implant positioning plan was confirmed by the surgeon, a patient-specific guide was designed and printed to enable the planned level of femoral neck osteotomy to be achieved, Fig 1. All patients received a Trinity cementless acetabular component (Corin, UK) and a cementless TriFit TS femoral component (Corin, UK) through a posterior approach. The achieved level of osteotomy was confirmed postoperatively by doing a 3D/2D registration, in the Mimics X-ray Module (Materialise, Belgium), of the planned 3D resected femur to the postoperative AP radiograph, Fig 2. The image was then scaled and the difference between the planned and achieved level of osteotomy was measured (imatri Medical, South Africa), Fig 2.Introduction
Methodology
Acetabular cup orientation has been shown to be a factor in edge-loading of a ceramic-on-ceramic THR bearing. Currently all recommended guidelines for cup orientation are defined from static measurements with the patient positioned supine. The objectives of this study are to investigate functional cup orientation and the incidence of edge-loading in ceramic hips using commercially available, dynamic musculoskeletal modelling software that simulates each patient performing activities associated with edge-loading. Eighteen patients with reproducible squeaking in their ceramic-on-ceramic total hip arthroplasties were recruited from a previous study investigating the incidence of noise in large-diameter ceramic bearings. All 18 patients had a Delta Motion acetabular component, with head sizes ranging from 40 – 48mm. All had a reproducible squeak during a deep flexion activity. A control group of thirty-six patients with Delta Motion bearings who had never experienced a squeak were recruited from the silent cohort of the same original study. They were matched to the squeaking group for implant type, acetabular cup orientation, ligament laxity, maximum hip flexion and BMI. All 54 patients were modelled performing two functional activities using the Optimized Ortho Postoperative Kinematics Simulation software. The software uses standard medical imaging to produce a patient-specific rigid body dynamics analysis of the subject performing a sit-to-stand task and a step-up with the contralateral leg, Fig 1. The software calculates the dynamic force at the replaced hip throughout the two activities and plots the bearing contact patch, using a Hertzian contact algorithm, as it traces across the articulating surface, Fig 2. As all the squeaking hips did so during deep flexion, the minimum posterior Contact Patch to Rim Distance (CPRD) can then be determined by calculating the smallest distance between the edge of the contact patch and the true rim of the ceramic liner, Fig 2. A negative posterior CPRD indicates posterior edge-loading.Introduction
Methodology
The pelvis is not a static structure. It rotates in the sagittal plane depending upon the activity being performed. These dynamic changes in pelvic tilt have a substantial effect on the functional orientation of the acetabulum. The aim of this study was to quantify the changes in sagittal pelvic position between three functional postures. Pre-operatively, 90 total hip replacement patients had their pelvic tilt measured in 3 functional positions – standing, supine and flexed seated (posture at “seat-off” from a standard chair), Fig 1. Lateral radiographs were used to define the pelvic tilt in the standing and flexed seated positions. Pelvic tilt was defined as the angle between a vertical reference line and the anterior pelvic plane (defined by the line joining both anterior superior iliac spines and the pubic symphysis). In the supine position pelvic tilt was defined as the angle between a horizontal reference line and the anterior pelvic plane. Supine pelvic tilt was measured from computed tomography, Fig 2.Introduction
Methodology