Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 54 - 54
14 Nov 2024
Pann P Taheri S Schilling AF Graessel S
Full Access

Introduction

Osteoarthritis (OA) causes pain, stiffness, and loss of function due to degenerative changes in joint cartilage and bone. In some forms of OA, exercise can alleviate symptoms by improving joint mobility and stability. However, excessive training after joint injury may have negative consequences for OA development. Sensory nerve fibers in joints release neuropeptides like alpha-calcitonin gene-related peptide (alpha-CGRP), potentially affecting OA progression. This study investigates the role of alpha-CGRP in OA pathogenesis under different exercise regimen in mice.

Method

OA was induced in C57Bl/6J WT mice and alpha-CGRP KO mice via surgical destabilization of the medial meniscus (DMM) at 12 weeks of age (N=6). Treadmill exercise began 2 weeks post-surgery and was performed for 30 minutes, 5 days a week, for 2 or 6 weeks at intense (16 m/min, 15° incline) or moderate (10 m/min, 5° incline) levels. Histomorphometric assessment of cartilage degradation (OARSI scoring), serum cytokine analysis, immunohistochemistry, and nanoCT analysis were conducted.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 119 - 119
14 Nov 2024
Rösch G Rapp AE Tsai PL Kohler H Taheri S Schilling AF Zaucke F Slattery D Lanzl ZJ
Full Access

Introduction

Osteoarthritis (OA) is a chronic degenerative disease of the entire joint leading to joint stiffness and pain (PMID:33571663). Recent evidence suggests that the sympathetic nervous system (SNS) plays a role in the pathogenesis of OA (PMID:34864169). A typical cause for long-term hyperactivity of the SNS is chronic stress. To study the contribution of increased sympathetic activity, we analyzed the progression of OA in chronically stressed mice.

Method

We induced OA in male C57BL/6J mice by destabilizing the medial meniscus (DMM)(PMID:17470400) and exposed half of these mice to chronic unpredictable mild stress (CUMS)(PMID:28808696). Control groups consisted of sham-operated mice with and without CUMS exposure. After 12 weeks, CUMS efficacy was determined by assessing changes in body weight gain and activity of mice, measuring splenic norepinephrine and serum corticosterone levels. OA progression was studied by histological analysis of cartilage degeneration and synovitis, and by μCT to evaluate changes in calcified cartilage and subchondral bone microarchitecture. A dynamic weight-bearing system was used to assess OA-related pain.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 139 - 139
2 Jan 2024
Rösch G Rapp AE Tsai P Kohler H Taheri S Schilling AF Zaucke F Slattery D Jenei-Lanzl Z
Full Access

Osteoarthritis (OA) affects the whole joint and leads to chronic pain. The sympathetic nervous system (SNS) seems to be involved in OA pathogenesis, as indicated by in vitro studies as well as by our latest work demonstrating that sympathectomy in mice results in increased subchondral bone volume in the OA knee joint. We assume that chronic stress may lead to opposite effects, such as an increased bone loss in OA due to an elevated sympathetic tone. Therefore, we analyzed experimental OA progression in mice exposed to chronic stress. OA was induced in male C57BL/6J mice by surgical destabilization of the medial meniscus (DMM) and Sham as well as non-operated mice served as controls. Half of these groups were exposed to chronic unpredictable mild stress (CUMS). After 12 weeks, chronic stress efficiency was assessed using behavioral tests. In addition to measuring body weight and length, changes in subchondral bone were analyzed by μCT. Dynamic Weight Bearing system was used to monitor OA-related pain. Histological scoring will be conducted to investigate the severity cartilage degeneration and synovial inflammation. CUMS resulted in increased anxiety and significant decrease in body weight gain in all CUMS groups compared to non-CUMS groups. CUMS also increased serum corticosterone in healthy mice, with even higher levels in CUMS mice after DMM surgery. CUMS had no significant effect on subchondral bone, but subarticular bone mineral density and trabecular thickness were increased. Moreover, CUMS resulted in significant potentiation of DMM-associated pain. Our results suggest that the autonomic imbalance with increased sympathetic nervous activity induced by chronic stress exacerbates the severity of OA pain perception. We expect significantly increased cartilage degeneration as well as more severe synovial inflammation in CUMS DMM mice compared to DMM mice.