The aim of this study was to perform the first population-based description of the epidemiological and health economic burden of fracture-related infection (FRI). This is a retrospective cohort study of operatively managed orthopaedic trauma patients from 1 January 2007 to 31 December 2016, performed in Queensland, Australia. Record linkage was used to develop a person-centric, population-based dataset incorporating routinely collected administrative, clinical, and health economic information. The FRI group consisted of patients with International Classification of Disease 10th Revision diagnosis codes for deep infection associated with an implanted device within two years following surgery, while all others were deemed not infected. Demographic and clinical variables, as well as healthcare utilization costs, were compared.Aims
Methods
Despite its clinical significance, metaphyseal fracture healing has received little attention in research and experimental models have been limited. In particular it is not known to what extent the mechanical environment plays a role in metaphyseal fracture healing. Recently, a new murine internal fixation plate has been developed to stabilise fractures in the distal femur under highly standardised conditions. Goal of the current study was to modify this design, in order to be able to evaluate the influence of the fixator bending stiffness on metaphyseal fracture healing in mice. Adapting the existing single body design, resulting in low flexibility fixation, two new plates were developed with a decreased bending stiffness of approximately 65% and 45% of the original implant (100%). Pilot experiments were performed on 54 animals, whereas the mice were sacrificed and fracture healing assessed radiologically and biomechanically after 14 and 28 days. MicroCT evaluation confirmed that the osteotomy was created in the trabecular, metaphyseal bone of the distal mouse femora. All bones showed progressive fracture healing over time, with decreased implant stiffness leading to increased periosteal callus formation. These implants represent an important new research tool to study molecular and genetic aspects of metaphyseal fracture healing in mice under standardized mechanical conditions, in order to improve clinical treatment in challenging situations, such as in osteoporotic bone.