Children undergoing posterior spinal fusion (PSF) for neuromuscular and syndromic scoliosis were admitted to the paediatric intensive care (PIC) until about 6 years ago, at which time we created a new unit, a hospital floor-based spinal high-dependency unit-plus (SHDU-plus), in response to frequent bed-shortage cancellations. This study compares postoperative management on PIC with HDU-plus for these non-hospital floor suitable children with syndromic and neuromuscular scoliosis undergoing PSF. Retrospective review of 100 consecutive children with syndromic and neuromuscular scoliosis undergoing PSF between June 2016 and January 2022. Inclusion criteria were: 1) diagnosis of syndromic or neuromuscular scoliosis, 2) underwent PSF, 3) not suitable for immediate postoperative hospital floor-based care. Exclusion criteria were children with significant cardio-respiratory co-morbidity requiring PIC postoperatively. 55 patients were managed postoperatively on PIC and 45 on SHDU-plus. No significant difference between groups was found with respect to age, weight, ASA grade, preoperative Cobb angles, operative duration, number of levels fused and estimated blood loss. 4 patients in the PIC group and 1 in the SHDU-plus group were readmitted back to PIC or HDU following step-down to the hospital floor. Average length of stay was 2 days on PIC and 1 day on SHDU-plus. Average total length of hospital stay was 16.5 days in the PIC group and 10.5 days in the HDU-plus group. 19 (35%) patients developed complications in the PIC group, compared to 18 (40%) in SHDU-plus. Mean specialist unit charge per day was less on SHDU-plus compared with PIC. There were no bed-shortage cancellations in the SHDU-plus group, compared to 11 in the PIC group. For children with neuromuscular or syndromic scoliosis undergoing PSF and deemed not suitable for post-operative care on the hospital floor, creation of a SHDU-plus was associated with fewer readmissions back to PIC or HDU, shorter hospital stays, an equivalent complication rate, significant cost-saving and fewer cancellations. Level of Evidence: Therapeutic Level III.
The lordosis distribution index (LDI) describes distribution of lumbar lordosis, measured as the % of lower lumbar lordosis (L4-S1) compared to global lordosis (L1-S1) with normal value 50–50%. Maldistributed LDI is associated with higher revision in short lumbar fusions, 4 vertebrae1. We hypothesise maldistributed LDI is also associated with mechanical failure in longer fusions. Retrospective review of 29 consecutive ASD patients, aged 55+, undergoing long lumbar fusion, 4 levels, with >3-years follow-up. LDI, pelvic incidence (PI) and sagittal vertical axis (SVA) were measured on pre- and post-op whole spine standing X-rays (Fig A and B). Patients were categorized according to their pelvic incidence (PI) and postoperative LDI: Normal (LDI 50 80), Hypolordotic (LDI < 50), or Hyperlordotic (LDI > 80) and assessed for failure rate compared to normal LDI and PI <60. Mean follow-up 4.5 years. 19 patients had mechanical failures including junctional failure and metalware fracture. PI >60o was associated with higher mechanical failure rates (Chi^2 p<0.05). Hypolordotic LDI was associated with 82% mechanical failure (Chi^2 p<0.001), Hyperlordotic 88% mechanical failure (Chi^2 p<0.001) and Normal 8% mechanical failure (Table 1). Maldistributed LDI, whether Hyperlordotic or Hypolordotic, correlated with 10× greater mechanical failure rate compared to Normal LDI in long fusions. LDI is a useful measurement that should be considered, especially in high PI patients.
With resumption of elective spine surgery services in the UK following the first wave of the COVID-19 pandemic, we conducted a multicentre British Association of Spine Surgeons (BASS) collaborative study to examine the complications and deaths due to COVID-19 at the recovery phase of the pandemic. The aim was to analyze the safety of elective spinal surgery during the pandemic. A prospective observational study was conducted from eight spinal centres for the first month of operating following restoration of elective spine surgery in each individual unit. Primary outcome measure was the 30-day postoperative COVID-19 infection rate. Secondary outcomes analyzed were the 30-day mortality rate, surgical adverse events, medical complications, and length of inpatient stay.Aims
Methods
To assess implant performance, to evaluate fusion and to assess clinical and radiologic outcome of circumferential fusion using porous tantalum cages for ALIF in a 360-degree fusion. A retrospective cohort study was performed over a 4-year period that included the implantation of 280 tantalum cages in 98 patients by the technique of anterior lumbar interbody fusion (ALIF) and posterolateral spondylodesis. Radiographic follow-up was performed to document any implant related problems. Preoperative and postoperative clinical outcome measures were assessed. No neurological, vascular or visceral injuries were reported. There were no rod breakages and no symptomatic non-unions. One revision procedure was performed for fracture. Mean VAS back pain score in our patient cohort improved from 7.5 preoperatively to 1.9 at latest follow-up, mean VAS leg pain score improved from 6.2 to 1.1 and mean ODI score improved from 51.1 to 18.3. Porous tantalum cages have high strength and flexibility, in addition to having similar biomaterial properties to cancellous bone. Their use in 360-degree spondylodesis to treat degenerative lumbar spine deformity has been demonstrated to be very safe and effective, with excellent clinical and functional outcomes.
To assess the clinical and radiologic outcome of MM patients with thoracic spine involvement and concomitant pathologic sternal fractures with a resultant severe sagittal plane deformity. A prospective cohort study (n=391) was performed over a 7-year period at a national tertiary referral centre for the management of multiple myeloma with spinal involvement. Clinical, serological and pathologic variables, radiologic findings, treatment strategies and outcome measures were prospectively collected. Pre-treatment and post-treatment clinical outcome measures utilised included EQ-5D, VAS, ODI and RMD scoring systems. 13 MM patients presented with a severe symptomatic progressive sagittal plane deformity with a history of pathologic thoracic compression fractures and concomitant pathologic sternal fracture. All patients with concomitant sternal fractures displayed the radiographic features and spinopelvic parameters of positive sagittal malalignment and attempted clinical compensation. All patients had poor health related quality of life measures when assessed. Pathologic sternal fracture in a MM patient with thoracic compression fractures is a risk factor for the development of a severe thoracic kyphotic deformity and sagittal malalignment. This has been demonstrated to be associated with a very poor health related quality of life.