Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 85 - 85
2 Jan 2024
Frost M Tirta M Rahbek O Rytoft L Ding M Shen M Duch K Kold S
Full Access

Healing after bone fracture is assessed by frequent radiographs, which expose patients to radiation and lacks behind biological healing. This study aimed to investigate whether the electrical impedance using electrical impedance spectroscopy correlated to quantitative scores of bone healing obtained from micro-CT and mechanical bending test.

Eighteen rabbits were subjected to tibial fracture that was stabilized with external fixator. Two electrodes were positioned, one electrode placed within the medullary cavity and the other on the lateral cortex, both three millimeters from the fracture site. Impedance was measured daily across the fracture site at a frequency range of 5 Hz to 1 MHz. The animals were divided into three groups with different follow-up time: 1, 3 and 6 weeks for micro-CT (Bone volume/tissue volume (BV/TV, %)) and mechanical testing (maximum stress (MPa), failure energy (kJ/cm3), young modulus (Mpa)).

There was a statistically significant correlation between last measured impedance at 5 Hz frequency immediately prior to euthanasia and BV/TV of callus (−0.68, 95%CI: (−0.87; −0.31)). Considering the mechanical testing with three-point bending, no significant correlation was found between last measured impedance at 5 Hz frequency immediately prior to euthanasia and maximum stress (−0.35, 95%CI: (−0.70; 0.14)), failure energy (−0.23, 95%CI: (−0.63; 0.26)), or young modulus (−0.28, 95%CI: (−0.66; 0.22)).

The significant negative correlation between impedance and BV/TV might indicate that impedances correlate with the relative bone volume in the callus site. The lack of correlation between impedance and mechanical parameters when at the same time observing a correlation between impedance and days since operation (0-42 days), might indicate that the impedance can measure biological changes at an earlier time point than rough mechanical testing.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 9 - 9
4 Apr 2023
Fridberg M Annadatha S Hua Q Jensen T Liu J Kold S Rahbek O Shen M Ghaffari A
Full Access

To detect early signs of infection infrared thermography has been suggested to provide quantitative information. Our vision is to invent a pin site infection thermographic surveillance tool for patients at home. A preliminary step to this goal is the aim of this study, to automate the process of locating the pin and detecting the pin sites in thermal images efficiently, exactly, and reliably for extracting pin site temperatures.

A total of 1708 pin sites was investigated with Thermography and augmented by 9 different methods in to totally 10.409 images. The dataset was divided into a training set (n=8325), a validation set (n=1040), and a test set (n=1044) of images. The Pin Detection Model (PDM) was developed as follows: A You Only Look Once (YOLOv5) based object detection model with a Complete Detection Intersection over Union (CDIoU), it was pre-trained and finetuned by the through transfer learning. The basic performance of the YOLOv5 with CDIoU model was compared with other conventional models (FCOS and YOLOv4) for deep and transition learning to improve performance and precision. Maximum Temperature Extraction (MTE) Based on Region of Interest (ROI) for all pin sites was generated by the model. Inference of MTE using PDM with infected and un-infected datasets was investigated.

An automatic tool that can identify and annotate pin sites on conventional images using bounding boxes was established. The bounding box was transferred to the infrared image. The PMD algorithm was built on YOLOv5 with CDIoU and has a precision of 0.976. The model offers the pin site detection in 1.8 milliseconds. The thermal data from ROI at the pin site was automatically extracted.

These results enable automatic pin site annotation on thermography. The model tracks the correlation between temperature and infection from the detected pin sites and demonstrates it is a promising tool for automatic pin site detection and maximum temperature extraction for further infection studies. Our work for automatic pin site annotation on thermography paves the way for future research on infection assessment using thermography.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 50 - 50
1 Nov 2021
Rytoft L Frost MW Rahbek O Shen M Duch K Kold S
Full Access

Introduction and Objective

Home-based monitoring of fracture healing has the potential of reducing routine follow-up and improve personalized fracture care. Implantable sensors measuring electrical impedance might detect changes in the electrical current as the fracture heals. The aim was to investigate whether electrical impedance correlated with radiographic fracture healing.

Materials and Methods

Eighteen rabbits were subjected to a tibial osteotomy that was stabilized with an external fixator. Two electrodes were positioned, one electrode placed within the medullary cavity and the other on the lateral cortex, both three millimeters from the osteotomy site. Transverse electrical impedance was measured daily across the fracture site at a frequency range of 5 Hz to 1 MHz using an Analog Discovery 2 Oscilloscope with Impedance Analyzer. Biweekly x-rays were taken and analyzed blinded using a modified anterior-posterior (AP) radiographic union score of the tibia (RUST). Each animal served as its own control by performing repeated measurements from time zero until the end of follow-up.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 87 - 87
1 Dec 2020
Frost MW Rytoft LA Shen M LI Y Zhekov SS Ghaffari A Kr⊘yer BK Pedersen GF Rahbek O Kold S
Full Access

In 2019, Lin et al. published a proof-of-concept study of electrical impedance spectroscopy as a simple and low-cost method to characterize progression of fracture repair (Lin et al., Sci Rep 2019). However, the electrical impedance sensors were placed in the fracture site which may impair the transfer to clinical use. To further explore the concept of monitoring fracture healing by electrical impedance spectroscopy, we established a tibial fracture model in the rabbit where sensors are positioned in proximity to the fracture site but without being placed in the fracture site. The aim of this pilot study was to explore whether distinct patterns of electrical impedance would evolve as tibial fractures in rabbits were evaluated until radiographic signs of healing.

Approval was granted from the Inspectorate of the Animal Experimentation under the Danish Ministry of Justice. Four rabbits were anaesthetized, and in each rabbit a tibial osteotomy was made and stabilized by an external fixator. Electrical impedance was measured immediately postoperative and hereafter daily until euthanization after 3 weeks. Recordings were obtained within a wide frequency range (10 Hz to 1 MHz) from an inner electrode placed into the medullary canal and an outer electrode placed extracortical on the lateral with a distance of 3 mm to the defect.

A similar pattern of electrical impedance over time was observed in the four rabbits. During the very early stages of fracture healing, an initial fluctuation in electrical impedance occurred. However, after 10 days the curves revealed a steady daily increase in electrical impedance. The first radiological signs of bone healing were detected after 14 days and progressed in all four rabbits in accordance with increments in the electrical impedance until termination of the pilot study after 21 days.

Consistent electrical impedance patterns were detected during bone healing in a pilot study of four rabbits. Further research is needed to explore whether the presented method of electrical impedance measurements can be used to monitor bone healing over time.