In articular cartilage defects, chemokines are upregulated and potentially induce the migration of bone marrow cells to accelerate the healing processes. The treatment of damaged articular cartilages is one of the most challenging issues in sports medicine and in aging societies. In the microfracture technique for the treatment of articular cartilage defects, bone marrow cells are assumed to migrate from the bone marrow. Bone marrow cells are well-known for playing crucial roles in the healing processes, but how they can migrate from underlying bone marrow remains to be investigated. We have previously shown that SDF-1, one of chemokines, play crucial roles in the recruitment of mesenchymal stem cells in bone healing processes, and the induction of SDF-1 can induce a successful bone repair. If the migration can be stimulated by any means in the cartilage defects, a better result can be expected. The aim of this study was to elucidate the mechanisms of the migration of bone marrow cells and which factors contribute to the processes.Summary Statement
Introduction
MCP-1/ CCR2 axis at the early phase plays a pivotal role in the fracture healing. Inflammation plays a pivotal role in fracture healing. Among them, chemokines play key roles in inflammation. Monocyte chemotactic protein-1 (MCP-1), via its receptor C-C chemokine receptor 2 (CCR2), acts as a potent chemoattractant for various cells to promote migration from circulation to inflammation site. Thus, the importance of MCP-1/CCR2 axis in fracture healing has been suggested. However, the involvement of MCP-1/CCR2 axis tofracture site is not fully elucidated. PCR Array: The expression of MCP-1 and MCP-3 had increased on day 2 than 0 or 7 in the rib fracture healing. Immunohistochemistry Staining: To verify the localization of MCP-1 expression, we examined the Wild type (WT)-mouse rib fracture healing. We observed high expression of MCP-1 and MCP-3 at the periosteum and the endosteum on post-fracture day 3. Summary Statement
Results