Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 5 | Pages 552 - 558
1 May 2019
Clark D Stevens JM Tortonese D Whitehouse MR Simpson D Eldridge J

Aims

The aim of this study was to determine and compare the congruency of the articular surface contact area of the patellofemoral joint (PFJ) during both active and passive movement of the knee with the use of an MRI mapping technique in both the stable and unstable PFJ.

Patients and Methods

A prospective case-control MRI imaging study of patients with a history of PFJ instability and a control group of volunteers without knee symptoms was performed. The PFJs were imaged with the use of an MRI scan during both passive and active movement from 0° through to 40° of flexion. The congruency through measurement of the contact surface area was mapped in 5-mm intervals on axial slices. In all, 40 patients were studied. The case group included 31 patients with symptomatic patellofemoral instability and the control group of nine asymptomatic volunteers. The ages were well matched between the case and control groups. The mean age was 25 years (16 to 42; sd 6.9) in the case group and 26 years (19 to 32; sd 5.1) in the control group. There were 19 female and 12 male patients in the case group.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_IX | Pages 32 - 32
1 Mar 2012
Kendrick B Simpson D Bottomley N Kaptein B Garling E Gill H Dodd C Murray D Price A
Full Access

Purpose of study

To investigate the linear penetration rate of the polyethylene bearing in unicompartmental knee arthroplasty at twenty years.

Introduction

The Phase 1 Oxford medial UKR was introduced in 1978 as a design against wear, with a fully congruous articulation. In 1987 the Phase 2 implant was introduced with new instrumentation and changes to the bearing shape. We have previously shown a linear penetration rate (LPR) of 0.02 mm/year at ten years in Phase 2, but that higher penetration rates can be seen with impingement. The aim of this study was to determine the 20 year in-vivo LPR of the Oxford UKR, using Roentgen Stereophotogrammetric Analysis (RSA).


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 1 | Pages 44 - 48
1 Jan 2006
Keene G Simpson D Kalairajah Y

Twenty patients underwent simultaneous bilateral medial unicompartmental knee arthroplasty. Pre-operative hip-knee-ankle alignment and valgus stress radiographs were used to plan the desired post-operative alignment of the limb in accordance with established principles for unicompartmental arthroplasty. In each patient the planned alignment was the same for both knees. Overall, the mean planned post-operative alignment was to 2.3° of varus (0° to 5°).

The side and starting order of surgery were randomised, using conventional instrumentation for one knee and computer-assisted surgery for the opposite side.

The mean variation between the pre-operative plan and the achieved correction in the navigated and the non-navigated limb was 0.9° (sd 1.1; 0° to 4°) and 2.8° (sd 1.4; 1° to 7°), respectively. Using the Wilcoxon signed rank test, we found the difference in variation statistically significant (p < 0.001).

Assessment of lower limb alignment in the non-navigated group revealed that 12 (60%) were within ± 2° of the pre-operative plan, compared to 17 (87%) of the navigated cases.

Computer-assisted surgery significantly improves the post-operative alignment of medial unicompartmental knee arthroplasty compared to conventional techniques in patients undergoing bilateral simultaneous arthroplasty. Improved alignment after arthroplasty is associated with better function and increased longevity.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 11 | Pages 1480 - 1482
1 Nov 2005
Kalairajah Y Simpson D Cossey AJ Verrall GM Spriggins AJ

We carried out a prospective randomised study to evaluate the blood loss in 60 patients having a total knee arthroplasty and divided randomly into two equal groups, one having a computer-assisted procedure and the other a standard operation. The surgery was carried out by a single surgeon at one institution using a uniform approach. The only variable in the groups was the use of intramedullary femoral and tibial alignment jigs in the standard group and single tracker pins of the imageless navigation system in the tibia and femur in the navigated group.

The mean drainage of blood was 1351 ml (715 to 2890; 95% confidence interval (CI) 1183 to 1518) in the computer-aided group and 1747 ml (1100 to 3030; CI 1581 to 1912) in the conventional group. This difference was statistically significant (p = 0.001). The mean calculated loss of haemoglobin was 36 g/dl in the navigated group versus 53 g/dl in the conventional group; this was significant at p < 0.00001.

There was a highly significant reduction in blood drainage and the calculated Hb loss between the computer-assisted and the conventional techniques. This allows the ordering of less blood before the operation, reduces risks at transfusion and gives financial saving. Computer-assisted surgery may also be useful for patients in whom blood products are not acceptable.