Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 3 - 3
1 Oct 2019
Rustenburg C Emanuel K Holewijn R van Royen B Smit T
Full Access

Purpose of study and background

Clinical researchers use Pfirrmann classification for grading intervertebral disc degeneration radiologically. Basic researchers have access to morphology and instead use the Thompson score. The aim of this study was to assess the inter-observer reliability of both classifications, along with their correlation.

Methods and Results

We obtained T2-weighted MR images of 80 human lumbar intervertebral discs with various stages of degeneration to assess the Pfirrmann-score. Then the discs were dissected midsagittally to obtain the Thompson-score. The observers were typical users of both grading systems: a spine surgeon, radiology resident, orthopaedic resident, and a basic scientist, all experts on intervertebral disc degeneration. Cohen's kappa (CK) was used to determine inter-observer reliability, and intra-class correlation (ICC) as a measure for the variation between the outcomes.

For the Thompson score, the average CK was 0.366 and ICC score 0.873. The average inter-observer reliability for the Pfirrmann score was 0.214 (CK) and 0.790 (ICC). Comparing the grading systems, the intra-observer agreement was 0.240 (CK) and 0.685 (ICC).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 24 - 24
1 Oct 2019
Emanuel K Mader K Peeters M Kingma I Rustenburg C Vergroesen P Sammon C Smit T
Full Access

Purpose of study and background

Mechanical overloading initiates intervertebral disc degeneration, presumably because cells break down the extracellular matrix (ECM). We used Fourier Transform Infrared Spectroscopy (FTIR) imaging to identify, visualize and quantify the ECM and aimed to identify spectroscopic markers for early disc degeneration.

Methods and Results

In seven goats, one disc was injected with chondroitinase ABC (mild degeneration) and after three months compared to control. Ex vivo, 50 caprine discs received physiological loading (50–150N) or overloading (50–400N) in a loaded disc culture system. To determine whether ECM degeneration is due to cell activity, half of the discs was subjected to freeze-thaw cycles. Spectroscopic images were collected at 1000–1300 cm−1 and analyzed using multivariate curve resolution analysis.

In vivo, less proteoglycan was found in the degenerated group (p<0.05), especially in the nucleus. Collagen content was increased in the nucleus and anterior annulus, and had higher entropy (p<0.01), indicating matrix disorganization. In the ex vivo experiment, the proteoglycan/collagen ratio was decreased (p<0.05) in the vital group and there was an increase in collagen entropy (p<0.05). A significant interaction between loading and vitality was found in the amount of collagen (p<0.05), but not in the entropy.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 30 - 30
1 Oct 2019
Snuggs J Rustenberg C Emanuel K Partridge S Sammon C Smit T Le Maitre C
Full Access

Purpose of study and background

Low back pain affects 80% of the population at some point in their lives with 40% of cases attributed to intervertebral disc (IVD) degeneration. A number of potential regenerative approaches are under investigation worldwide, however their translation to clinic is currently hampered by an appropriate model for testing prior to clinical trials. Therefore, a more representative large animal model for IVD degeneration is needed to mimic human degeneration. Here we investigate a caprine IVD degeneration model in a loaded disc culture system which can mimic the native loading environment of the disc.

Methods and Results

Goat discs were excised and cultured in a bioreactor under diurnal, simulated-physiological loading (SPL) conditions, following 3 days pre load, IVDs were degenerated enzymatically for 2hrs and subsequently loaded for 10 days under physiological loading. A PBS injected group was used as controls. Disc deformation was continuously monitored and changes in disc height recovery quantified using stretched-exponential fitting. Histological staining was performed on caprine discs to assess extracellular matrix production and immunohistochemistry performed to determine expression of catabolic protein expression.

The injection of collagenase and cABC induced mechanical behavior akin to that seen in human degeneration. A decrease in collagens and glycosaminoglycans (GAGs) was seen in enzyme injected discs, which was accompanied by increased cellular expression for degradative enzymes and catabolic cytokines.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_10 | Pages 18 - 18
1 Oct 2019
Smit T Paul K Vergroesen P Emanuel K
Full Access

Purpose of study and background

Degeneration of the intervertebral disc is a strong contributor of low back pain. Studies have shown that both, mechanical unloading and overloading, lead to disc degeneration. This is intuitively clear if one considers that an intervertebral disc essentially is a poro-elastic material embedded with cells, which depend on fluid flow for the transport of nutrients and waste products. As such, mechanical loading is also required for regeneration. It is unclear, however, how much loading is beneficial or detrimental for the healthy or degenerated disc.

Methods and Results

We developed a loaded disc culture system for the long-term study of disc physiology. This way we could control both the mechanical and biochemical conditions. If no loading was applied, about half of the cells died within a week. Cells died under a low dynamic loading regime after three weeks. A diurnal loading regime rescued cell viability, gene expression profile and mechanical behavior of the discs. Both static and dynamic overloading induced damage to the discs and led to catabolic and inflammatory gene expressions.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 30 - 30
1 Apr 2018
Emanuel K Peeters M Kingma I Mader K Rustenburg C Sammon C Smit T
Full Access

Biomechanical overloading initiates intervertebral disc degeneration. We hypothesized that this is due to mechanosensitivity of the cells, which break down the extracellular matrix. Previously, we found that overloading in a loaded disc culture system causes upregulation of remodeling- and inflammatory gene expressions. Fourier Transform Infrared Spectroscopy is a novel technique to identify, visualize and quantify ECM. In this research, we first identified novel spectroscopic markers for disc degeneration, and then applied these markers to investigate the first steps into disc degeneration by overloading.

In dataset 1, 18 discs of 9 goats were injected with chondroitinase ABC (degenerated) or not (control), and obducted 3 months after injection. This was used to find new spectroscopic markers for degeneration. In dataset 2, 42 goat discs were loaded with a physiological loading regime (50–150N) or overloading (50–400N) in a loaded disc culture system. In 18 of these discs, the cell activity was diminished in advance by freeze-thaw cycles and culturing on saline alone (non-vital group)). 24 additional discs were cultured in culture medium immediately post-mortem (vital group). Thereby, we are able to control whether the effect of the overloading is due to cell activity. The discs were fixed in formaldehyde, and 4 μm mid-sagittal were mounted to steel reflectance slides. Infrared spectroscopic mosaic images (23 × 57 images) were collected in transflectance mode at a spectral region of 1025–1150 cm−1. Data was pre-processed by second derivative transformation and MCR-MALS with two factors.

The two factors were transferable between datasets, confirming the reliability. The first factor represents proteoglycans, as confirmed by Saffrin-O staining. In dataset 1, the degenerated group had less proteoglycan factor overall, especially in the nucleus (p<0.05). The second factor was found to have a lower entropy (p<0.01), showing a disorganization in the matrix. In dataset 2, no significant reduction in proteoglycan was found due to overloading in any group. However, the entropy was lower in the overloaded vital group (p<0.05), but not in the overloaded non-vital group (p>0.5).

Therefore, we conclude that infrared spectroscopy is a promising tool to investigate early disc degeneration. Overloading can cause changes in the extracellular matrix, but only due to cell activity. Entropy is an early marker for early disc degeneration, implying that cutting of the extracellular matrix by cell activity is the first step into intervertebral disc degeneration.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 31 - 31
1 Apr 2018
Vergroesen PP Emanuel K Peeters M Kingma I Smit T
Full Access

The intervertebral disc faces high compressive forces during daily activities. Axial compression induces creeping fluid loss and reduction in disc height. With degeneration, disc fluids and height are progressively lost, altering biomechanics. It is assumed that this loss of fluids is caused by a drop in osmolality in the disc due to proteoglycan depletion. Here we investigate the isolated effect of a reduction in osmosis on the biomechanical properties of the intervertebral disc. Continuous diurnal loading was applied to healthy caprine intervertebral discs in a loaded disc culture system for a total of 6 days. We increased testing bath osmolality with two doses of polyethylene-glycol (PEG), thereby reducing the osmotic gradient between the disc and the surrounding fluid. This way we could study the isolated effect of reduced osmosis on axial creep, without damaging the disc. We evaluated: daily creep and recovery, recovery time-constants and compressive stiffness. Additionally, we investigated water content. There was a strong dose-dependent effect of PEG concentration on water content and axial creep behaviour: disc height, amplitude and rate of creep and recovery were all significantly reduced. Axial compressive stiffness of the disc was not affected. Reduction of water content and amplitude of creep and recovery showed similarity to degenerative disc biomechanics. However, the time-constants increased, indicating that the hydraulic permeability was reduced, in contrast to what happens with degeneration. This suggests that besides the osmotic gradient, the permeability of the tissues determines healthy intervertebral disc biomechanics.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 28 - 28
1 Apr 2018
Rustenburg C Emanuel K Peeters M Lems W Vergroesen PP Smit T
Full Access

Intervertebral disc degeneration is a common cause of low-back pain, the musculoskeletal disorder with the largest impact world-wide. The complex disease is however not yet well understood, and no treatment is available. This is somewhat in contrast with osteoarthritis, a subject of more extensive research. Intervertebral disc degeneration may though be a type of osteoarthritis, as other vertebrates have a diarthrodial joint instead of an intervertebral disc. We describe the parallel in view of the anatomy, composition and degeneration of the intervertebral disc and articular joint. Not only different embryonic origin and anatomy suggest significant differences between the intervertebral disc and the synovial joint, but their biomechanical properties also partly differ, as articulation is one of the key properties of a synovial joint and does not occur in the intervertebral disc. However, both tissues provide flexibility and are able to endure compressive loads, and both cell behavior and extracellular matrix appear much the same, mainly existing of chondrocytes, proteoglycans and collagen type II, suggesting that the environment of the cell is more important to its behavior than embryonic origin. Moreover, great similarities are found in the inflammatory cytokines, which are mainly IL-1β and TNF-α, and matrix-degrading factors (i.e. MMPs and ADAMTSs) involved in the cascade of degeneration, resulting in overlapping clinical and radiological features such as loss of joint space, subchondral sclerosis, and the formation of osteophytes, causing pain and morning stiffness. Therefore, we state that disc degeneration can result in the osteoarthritic intervertebral disc. This point of view may enhance the synergy between both fields of research, and potentially provide new regenerative strategies for intervertebral disc degeneration.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 88 - 88
1 May 2017
Vergroesen P van der Veen A Emanuel K van Dieën J Smit T
Full Access

Daytime spinal loading is twice as long as night time rest, but diurnal disc height changes due to fluid flow are balanced. A direction-dependent permeability of the endplates, favouring inflow over outflow, has been proposed to explain this; however, fluid also flows through the annulus fibrosus. This study investigates the poro-elastic behaviour of entire intervertebral discs in the context of diurnal fluid flow.

Caprine discs were preloaded in saline for 24 hours under different levels of static load. Under sustained load, we modulated the disc's swelling pressure by replacing saline for demi-water and back again to saline, both for 24h intervals. We measured the disc height creep and used stretched exponential models to determine the respective time constants.

Reduction of culture medium osmolality induced an increase in disc height, and the subsequent restoration induced a decrease in disc height. Creep varied with the mechanical load applied. No direction-dependent resistance to fluid flow was observed. In addition, time constants for mechanical preloading were much shorter than for osmotic loading, suggesting that outflow is faster than inflow. However, a time constant does not describe the actual rate of fluid flow: close to equilibrium fluid flow is slower than far from equilibrium. As time constants for mechanical loading are shorter and daytime loading twice as long, the system is closer to the loading equilibrium than to the unloading equilibrium. Therefore, paradoxically, fluid inflow is faster during the night than fluid outflow during the day.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 225 - 225
1 Jul 2014
Detiger S Holewijn R Hoogendoorn R Helder M Berger F Kuijer J Smit T
Full Access

Summary Statement

Conventional imaging techniques lack the ability to objectively assess early stages of intervertebral disc degeneration, characterised by glycosaminoglycan loss. This study shows that MRI T2∗ mapping correlates positively with GAG content and that it provides continuous measurements for disc degeneration.

Introduction

Early degenerative changes arise in the nucleus pulposus (NP) and are characterised by a loss of glycosaminoglycans (GAG). Early disc degeneration (DD) could possibly be treated with upcoming regenerative therapies (e.g. with stem cells and/or growth factors). In order to evaluate degeneration and treatments, a sensitive diagnostic tool is needed. While conventional magnetic resonance imaging (MRI) and x-ray techniques can detect late stages of DD, these techniques lack the ability to detect early degenerative changes. Recently, T2∗ mapping has been proposed as a new technique to evaluate early IVD degeneration, yet the correlation with GAG content and histological features has not been previously investigated. The objective of this study was to determine the value of T2∗ mapping in diagnosing DD by correlating this technique with the biochemical composition of IVDs.