A common orthopaedic pain found in a wide spectrum of individuals, from young and active to the elderly is anterior knee pain (AKP). It is a multifactorial disorder which is thought to occur through muscular imbalance, overuse, trauma, and structural malalignment. Over time, this can result in cartilage damage and subsequent chondral lesions. Whilst the current gold standard for chondral lesion detection is MRI, it is not a highly sensitive tool, with around 20% of lesions thought to be mis-diagnosed by MRI. Single-photon emission computerised tomography with conventional computer tomography (SPECT/CT) is an emerging technology, which may hold clinical value for the detection of chondral lesions. SPECT/CT may provide valuable diagnostic information for AKP patients who demonstrate absence of structural change on other imaging modalities. This review systematically assessed the value of SPECT/CT as an imaging modality for knee pain, and its ability to diagnose chondral lesions for patients who present with knee pain. Using PRISMA guidelines, a systematic search was carried out in PubMed, Science Direct, and Web of Knowledge, CINAHL, AMED, Ovid Emcare and Embase. Inclusion criteria consisted of any English language article focusing on the diagnostic value of SPECT/CT for knee chondral lesions and knee pain. Furthermore, animal or cadaver studies, comparator technique other than SPECT/CT or patients with a pathology other than knee chondral lesions were excluded from the study. Relevant articles underwent QUADAS-2 bias assessment.Abstract
Objective
Methods
The objectives of the study were to investigate demographic, injury and surgery/treatment-associated factors that could influence clinical outcome, following Autologous Chondrocyte Implantation (ACI) in a large, “real-world”, 20 year longitudinally collected clinical data set. Multilevel modelling was conducted using R and 363 ACI procedures were suitable for model inclusion. All longitudinal post-operative Lysholm scores collected after ACI treatment and before a second procedure (such as knee arthroplasty but excluding minor procedures such as arthroscopy) were included. Any patients requiring a bone graft at the time of ACI were excluded. Potential predictors of ACI outcome explored were age at the time of ACI, gender, smoker status, pre-operative Lysholm score, time from surgery, defect location, number of defects, patch type, previous operations, undergoing parallel procedure(s) at the time of ACI, cell count prior to implantation and cell passage number. The best fit model demonstrated that for every yearly increase in age at the time of surgery, Lysholm scores decreased by 0.2 at 1-year post-surgery. Additionally, for every point increase in pre-operative Lysholm score, post-operative Lysholm score at 1 year increased by 0.5. The number of cells implanted also impacted on Lysholm score at 1-year post-op with every point increase in log cell number resulting in a 5.3 lower score. In addition, those patients with a defect on the lateral femoral condyle (LFC), had on average Lysholm scores that were 6.3 points higher one year after surgery compared to medial femoral condyle (MFC) defects. Defect grade and location was shown to affect long term Lysholm scores, those with grade 3 and patella defects having on average higher scores compared to patients with grade 4 or trochlea defects. Some of the predictors identified agree with previous reports, particularly that increased age, poorer pre-operative function and worse defect grades predicted poorer outcomes. Other findings were more novel, such as that a lower cell number implanted and that LFC defects were predicted to have higher Lysholm scores at 1 year and that patella lesions are associated with improved long-term outcomes cf. trochlea lesions.
The findings demonstrate that culture expanded human mesenchymal stem cells (MSCs) incorporated and proliferated in clinically relevant cell scaffolds better than freshly isolated bone marrow mononucleated cells (MNCs); in fact, only in MSC cultures were cells present for longer term chondrogenic inductions. The treatment of chondral defects poses a significant clinical problem and a variety of cell sources and techniques have been studied and practiced to regenerate cartilage. Preclinical and clinical evidence suggests that MSCs can help regenerate cartilage when transplanted into cartilage lesions. However, the uptake of MSCs for cell therapies is limited due to the need for their culture expansion to generate subsequent numbers for transplantation. An alternative is to use minimally manipulated MNCs, which avoids the costs and regulatory implications of culture expansion and would enable the treatment of cartilage defects in a one-step procedure. Therefore, this study has focused on comparing these two cell types within three different scaffolds that can currently be used as cell delivery systems.Summary
Introduction
Patellofemoral pain and instability can be quantified by using the tibial tuberosity to trochlea groove (TT-TG) distance with more than or equal to 20mm considered pathological requiring surgical correction. Aim of this study is to determine if knee joint rotation angle is predictive of a pathological TT-TG. One hundred limbs were imaged from the pelvis to the foot using Computer Tomography (CT) scans in 50 patients with patellofemoral pain and instability. The TT-TG distance, femoral version, tibial torsion and knee joint rotation angle ((KJRA) were measured. Limbs were separated into pathological and non-pathological TT-TG. Significant differences in the measured angles between the pathological and non-pathological groups were estimated using the t test. The inter- and intraobserver variability of the measurement was performed. Logistic regression analysis was used to find the best combination of rotational angle predictors for a pathological TT-TG.Introduction
Methods