Objective: To date the principal focus of the mechanism of cervical spine fracture has been directed at head/ neck circumference and spinal canal dimensions. However the role of other measurements, including chest diameter and head/neck/chest proportional ratios, in a standard cervical fracture population has not yet been studied in detail. Cervical fractures often involve flexion/ extension type mechanisms of injury, with the head and cervical spine flexing/extending, using the thorax as a fulcrum.
Study design: We prospectively studied all patients with cervical spine fractures who were admitted to the spinal injuries unit from 1st July, 2000 to 1st March 2001. Anthropometrical measurement of head circumference, neck circumference, chest circumference, and neck length were analysed. Ages ranged from 18 – 55yrs, and all patients with concomitant cervical pathology were excluded from the study. Mechanism of injury involved flexion/extension type injuries in all cases; those with direct axial loading were excluded. A control group of 30 patients (age 18–55yrs) involved in high velocity trauma with associated long bone fractures, in whom cervical injury was suspected but without any cervical fracture, or associated pathology, were measured.
Results: Our analysis revealed a statistically significant increase in chest size in the male control group versus the fracture group 98.89cm v. 94.19cm (P<
0.05, t-test). There was a correspondingly significant increase in chest circumference between the female control versus the fracture group 94.33cm v. 88.88cm(P<
0.05, t-test). Our results revealed no statistical difference in either head circumference, neck circumference, or neck length between each of the groupings. However we found a statistically significant increase in head/neck/chest ratios between each of the groups. These results indicate a proportionately larger chest may be protective in cervical spine fractures.