Aim
Bone regeneration following the treatment of Staphylococcal bone infection or osteomyelitis is challenging due to the ability of Staphylococcus aureus to invade and persist within bone cells, which could possibly lead to antimicrobial tolerance and incessant bone destruction.
Here, we investigated the influence of Staphylococcal bone infection on osteoblasts metabolism and function, with the underlying goal of determining whether Staphylococcus aureus-infected osteoblasts retain their ability to produce extracellular mineralized organic matrix after antibiotic treatment.
Method
Using our in vitro infection model, human osteoblasts-like Saos-2 cells were infected with high-grade Staphylococcus aureus EDCC 5055 strain, and then treated with 8 µg/ml rifampicin and osteogenic stimulators up to 21-days.