Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 32 - 32
1 Oct 2022
Tøstesen S Stilling M Hanberg P Thillemann TM Falstie-Jensen T Tøttrup M Knudsen M Petersen ET Bue M
Full Access

Aim

Deadspace is the tissue and bony defect in a surgical wound after closure. This space is presumably poorly perfused favouring bacterial proliferation and biofilm formation. In arthroplasty surgery, an obligate deadspace surrounding the prosthesis is introduced and deadspace management, in combination with obtaining therapeutic prophylactic antibiotic concentrations, is important for limiting the risk of acquiring a periprosthetic joint infection (PJI). This study aimed to investigate cefuroxime distribution to an orthopaedic surgical deadspace in comparison with plasma and bone concentrations during two dosing intervals (8 h × 2).

Method

In a setup imitating shoulder arthroplasty surgery, but without insertion of a prosthesis, microdialysis catheters were placed for cefuroxime sampling in a deadspace in the glenohumeral joint and in cancellous bone of the scapular neck in eighteen pigs. Blood samples were collected from a central venous catheter as a reference. Cefuroxime was administered according to weight (20 mg/kg). The primary endpoint was time above the cefuroxime minimal inhibitory concentration of the free fraction of cefuroxime for Staphylococcus aureus (fT > MIC (4 µg/mL)).


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 69 - 69
1 Dec 2018
Bue M Hanberg P Tøttrup M Thomassen M Sorensen HB Thillemann TM Andersson TL Søballe K
Full Access

Aims

Vancomycin may be an important drug for intravenous perioperative antimicrobial prophylaxis in spine surgery. We assessed single-dose vancomycin intervertebral disc, vertebral cancellous bone, and subcutaneous adipose tissue concentrations using microdialysis in a pig model.

Methods

8 female pigs received 1,000 mg of vancomycin intravenously as a single dose over 100 minutes. Microdialysis probes were placed in the C3-C4 intervertebral disc, C3 vertebral cancellous bone, and subcutaneous adipose tissue, and vancomycin concentrations were obtained over 8 hours. Venous blood samples were obtained as reference.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 45 - 45
1 Dec 2018
Bue M Hanberg P Koch J Jensen LK Lundorff M Aalbæk B Jensen HE Søballe K Tøttrup M
Full Access

Aim

The increasing incidence of orthopaedic methicillin-resistant Staphylococcus aureus (MRSA) infections represents a significant therapeutic challenge. Being effective against MRSA, the role of vancomycin may become more important in the orthopaedic setting in the years to come. Nonetheless, vancomycin bone and soft tissue penetration during infection remains unclear. We assessed the effect of a traumatically induced, implant-associated acute osteomyelitis on vancomycin bone penetration in a porcine model.

Method

In eight pigs, implant-associated osteomyelitis was induced on day 0, using a Staphylococcus aureus strain. Following administration of 1,000 mg of vancomycin on day 5, vancomycin concentrations were obtained with microdialysis for eight hours in the implant bone cavity, in cancellous bone adjacent to the implant cavity, in subcutaneous adipose tissue (SCT) adjacent to the implant cavity, and in healthy cancellous bone and healthy SCT in the contralateral leg. Venous blood samples were also obtained. The extent of infection and inflammation was evaluated by post-mortem computed tomography scans, C-reactive protein serum levels and cultures of blood and swabs.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 62 - 62
1 Dec 2017
Hanberg PE Bue M Sørensen HB Søballe K Tøttrup M
Full Access

Aim

Pyogenic spondylodiscitis is associated with prolonged antimicrobial therapy and high relapse rates. Nevertheless, tissue pharmacokinetic studies of relevant antimicrobials in both prophylactic and therapeutic situations are still sparse. Previous approaches based on bone biopsy and discectomy exhibit important methodological limitations. The objective of this study was therefore to assess the concentration of cefuroxime in intervertebral disc (IVD), vertebral body cancellous bone, subcutaneous adipose tissue (SCT) and plasma pharmacokinetics after single dose administration by use of microdialysis (MD) in a large animal model.

Method

Ten female pigs were assigned to receive 1,500 mg of cefuroxime intravenously over 15 min. Measurements of cefuroxime were obtained from plasma, SCT, the vertebral cancellous bone and the IVD for 8 hours thereafter. MD was applied for sampling in solid tissues. The cefuroxime concentration in both the MD and plasma samples was determined using ultra-high performance liquid chromatography.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 74 - 74
1 Dec 2017
Bue M Tøttrup M Hanberg P Langhoff O Sorensen HB Thillemann TM Andersson TL Søballe K
Full Access

Aim

The incidence of orthopaedic methicillin-resistant staphylococcus aureus infections is increasing. Vancomycin may therefore play an increasingly important role in orthopaedic perioperative antimicrobial prophylaxis. Adequate antimicrobial concentrations at target site is essential for prevention of orthopaedic infections. Current studies investigating perioperative bone and soft tissue concentrations of vancomycin are sparse and challenged by a lack of appropriate methods. The aim of this study was therefore to assess the concentration of vancomycin in plasma, subcutaneous tissue and bone after single dose administration using microdialysis (MD) in patients undergoing total knee replacement.

Method

1,000 mg of vancomycin was postoperatively administered intravenously over 100 minutes to 10 male patients undergoing primary total knee replacement. Vancomycin concentrations in plasma, subcutaneous tissue (SCT), cancellous and cortical bone were measured the following 8 hours. MD was applied for sampling in solid tissues. The vancomycin concentration in MD-samples was determined using ultra-high performance liquid chromatography, whilst the free plasma concentration was determined using a chemistry analyzer*.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_23 | Pages 77 - 77
1 Dec 2016
Tøttrup M Bue M Koch J Jensen LK Hanberg P Aalbæk B Fuursted K Jensen HE Søballe K
Full Access

Aim

A reason for treatment failure, in cases of periprosthetic bone infections and osteomyelitis, may be incomplete or heterogeneous tissue distribution of antimicrobials to the affected bone. Decreased bioavailability has been demonstrated in healthy bones but never in pathological bone tissue. Therefore, the aim was to obtain pharmacokinetic parameters of cefuroxime in infected bone tissue by means of microdialysis in a porcine model of implant associated osteomyelitis

Method

An implant cavity of 4 mm in diameter was drilled 25 mm into the right tibial bone of ten pigs (30 kg/BW). Subsequently, a small steel implant (K-wire 2 × 2 mm) and 104 CFU of Staphylococcus aureus was inserted and injected into the implant cavity. Five days after inoculation, two additional drill holes of 2 × 25 mm were drilled into the trabecular bone tissue adjacent to the implant cavity and into the left uninfected tibia. After intravenous administration of 1500 mg of cefuroxime, the concentration was measured in plasma and in the three tibial drill holes for 8 hours. All measurements were performed with microdialysis. Post mortem, the presence of bone infection was assessed by computed tomography (CT) scans and cultures of swabs.