We have been using 3-dimensional CAD software for preoperative planning as a desktop tool daily. In ordinary cases, proper size stems and cups can be decided without much labor but in our population, many arthritic hip cases have dysplastic condition and they often come to see us for hip replacement after severe defects were created over the acetabulum. It is often the case that has Crowe's type III, IV hips with leg length difference. For those cases preoperative planning using 3D CAD is a very powerful tool. Although we only have 2-dimensional display with our computer during preoperative planning, 3 dimensional geometries are not so difficult to be understood, because we can turn the objects with the mouse and can observer from different directions. We can also display their sections and can peep inside of the geometries. It is quite natural desire that a surgeon wishes to see the planed geometries as a 3-dimensional materials. For some complicated cases, we had prepared plastic model and observed at the theater for better understanding. When we ask for a model service, each model costs $2,500. We also have small scale desk top rapid processing tool too, however it takes 2 days to make one side of pelvis. Observation of the geometries using 3-dimensional display can be its substitute without much cost and without taking much time. The problem of using 3D display had been the special goggle to mask either eye alternatively. In the present paper, we have used a 3D display which has micro arrays of powerful prism to deriver different image for each eye without using any goggle. After preoperative planning, 2 images were prepared for right eye and left eye giving 2-3 degree's parallax. These images were encoded into a special AVI file for 3-dimensional display. To keep fingers away from the device, several scenes were selected and 3-dimensional slide show was endlessly shown during the surgery. Cup geometries with screws had been prepared and cup position with screws direction were very useful. The edge of acetabulum and cup edge are well compared then could obtain a better cup alignment. Screws are said to be safe if they were inserted in upper posterior quadrant. However so long as the cluster cup was used, when the cup was given 30 degrees anterior rotation, 25 mm screw was still acceptable using CAT angiography.Method
Result
Dislocation after total hip arthroplasty (THA) is one of the most serious complications. We recently modified the design of Lateral Flare femoral component (RevelationV2) with six degrees lower anteversion to reproduce the normal hip condition in Japanese. In addition, we added 10-degree slope on the posterior neck to prevent dislocation especially aimed to high anteversion cases. The purpose of this study is to verify the clinical outcome after this design modification. Hospital records and database were retrospectively reviewed. We investigated 46 consecutive hips in 43 patients who underwent primary total hip arthroplasty using RevelationV2 from September 2007 to August 2009. All patients implicated preoperative planning using CAT scan with their informed consents. The mean age and BMI at surgery were 63 years old and 23.1. Preoperative diagnosis was osteoarthritis (40/46: 87%), rheumatoid arthritis (2/46: 4%) or avascular necrosis of femoral head (4/46: 9%). There were 41 hips (89.2%) of Crowe I, 3(6.5%) of Crowe II and 2(4.3%) of Crowe III. Preoperative femoral neck anteversion averaged 28 degrees, whereas postoperative combined anteversion (the sum of femoral neck anteversion and anterior cup inclination) averaged 46 degrees. During follow up, 5 complications, in details, 3 mild peroneal nerve palsy, 1 pulmonary embolism and 1 dislocation following deep infection were reported. In conclusion, although no ordinal dislocation was found in this series, longer observation will need to judge appropriateness of this new component.
One of the ironies in modern technology for arthroplasty is the stress shielding in cementless stems. The aim of the development of cementless stems had been reduction of stress shielding which cement stems are not free from. In healthy femur, trabecula start form the femoral head and reach at both medial and lateral cortex in rather narrow area around lesser trochanter. So the load from the femoral head is transferred at the level on both medial and lateral side. Cement stems should have binding to the cortical bone from collar to the tip of the stem where the cement interlays, and then the load is transferred gradually from the tip to the collar, which means mild stress shielding. When distal bonding is removed, the load could be transferred as normal femur. This should have been one of the biggest requests for cementless stem. But in realty many cementless stems have difficulty to obtain a load transfer at the level like normal femur. Since 1990, we have been mainly using lateral flare stems to obtain contact on both medial and lateral side at proximal level. In the present study, different types and length of the designs were compared by 3-Dimensional fill, 3-Dimensional fit and Finite Element Analysis. Stems from DJO: Revelation Standard, Revelation Short, and Linear stems were inserted into patients' canal geometries. Three-D fill and 3-D fit which were reported ISTA2009 and stress transfer were observed by FEA. The closest fit and fill were observed Revelation Short and Revelation Standard then Linear. The most proximal load transfer was observed Revelation Short, followed by Revelation Standard then Linear.Materials and Methods
Results
Canal Flare Index, defined as the ratio of the intracortical width of the femur at a point 20mm proximal to the lesser trochanter and at the canal isthmus by Noble et al,; is considered to express the proximal femoral geometory, but it is usually measured by a plain A-P X-ray. Then it is thought the index is influenced by rotational position of the femur, so we made 3-D femoral model based on CAT scans and measured the canal flare index three dimensionally. Then the effect of observation from rotated direction was evaluated. CAT scans of 49 femurs (18 male, 31 female) were obtained from the pelvis to the feet. The average age was 60.4 years old ranging from 25 to 82. Forty nine femurs contained 22 osteoarthritis of hip joint, 12 trauma, 9 knee arthritis, 3 avascular necrosis of femoral head, 3 normal candetes. From those data, 3-D models of normal side were individually made for measuring the parameters. 3-D models were made using CAD software. We measured the canal flare index at which the femur posterior condyles were parallel to the plane, reproducing the situation to take A-P X-ray. After that, those 3-D models were rotated and investigated the difference of the value to study the effect of femur position. The canal flare index was between 2.8 and 6.6 with the average value at 4.65. The stovepipe (canal flare index<
3), the normal range (3~canal flare index<
4.7), the champagne flute (4.7~canal flare index), included 2%(1 femur), 61.2%(30 femurs), 36.7%(18 femurs), respectively. About the effect of rotation, we found the value of canal flare index was more sensitive to proximal femur rotation than the canal isthmus. The results of the canal flare index at the plane parallel to the posterior condyle line varied widely compared with the results at the position considering the anteversion. So it was suggested that the canal flare index at the patella front position does not represent the canal characteristics. It should be argued in 3-D space.
One of the most important characteristic of the developmental dysplastic hip (DDH) is high anteversion in femoral neck. Neck-shaft angle is also understood to be higher (i.e. coxa-valga) in DDH femora. From this understanding many DDH intended stems were designed having larger neck shaft angle. According to the result of our prior study; reported in ISTA 2005 etc.; using computer 3-D virtual surgery of high fit-and-fill lateral flare stem into high anteversion patients, it was revealed that the geometry of proximal femur itself does not have big difference from normal femora but they are only rotated blow lessertrochanter. It is very important to know what anteversion is, and where anteversion is located, to design a better stem and to decide more proper surgical procedures for DDH cases with high anteversion. In the present study, the geometry of 57 femora was assessed in detail to reveal the geometry of anteversion and its location in the DDH femora. Fifty seven CAT scan data with many causes were analyzed. Thirty-two DDH, 3 Rheumatic Arthritis (RA), 2 metastatic bone tumors, 4 avascular necrosis (AVN), 1 knee arthritis, 12 injuries, and 3 normal candidates were included. Whole femoral geometries were obtained from CAT scan DICOM data and transferred to CAD geometry data format. All the following landmarks were measured its direction by the angle from posterior condylar line. The assessed landmarks were
anteversion, lesser trochanter, linea aspera at the middle of the femur, and two more (upper 1/6, 2/6 level of aspera) linea aspera directions were assessed between ii) and iii). All the directions were measured by the angle from the medial of the femur. The direction of anteversion and lesser trochanter were well correlated, (R=0.55, Y=0.56X−35) i.e. femoral head and lesser trochanter were rotated together. The direction of lesser trochanter and aspera in upper 1/6 section had no relation even they are located very close with only several cm distance, (R=−0.03, Y=−0.02X−88) i.e. however the lesser trochanter was rotated, the upper most aspera was located almost at the same direction (−87.5+/−7.58 degree). The direction of aspera at upper 1/6 and middle femur were strongly correlated. (R=0.63, Y=0.81X-22) i.e. they stay at the same direction. The results mean that the anteversion is a twist between normal proximal femur (from femoral head and lesser trochanter) and normal distal femur. The twist was located just blow lesser trochanter within several centimeter. The anteversion has been understood as the abnormal mutual position between femoral neck and femoral shaft. In high anteversion hips the neck shaft angle was also believed to be higher, so several DDH oriented stems have higher neck shaft angle i.e. coxa-valga geometries. It has been believed that the location of the anteversion was around neck part. This study revealed that the deformity was located in the very narrow part just below lesser trochanter. It has been discussed that DDH oriented stems should have fit to different canal geometries, but understanding the biomechanics of abnormal anteversion and its treatment should be more important.
Since 1993, we have been developing preoperative planning system based on CAT scan data. In early period it was used to decide cup diameter and orientation for Total Hip Arthroplasty (THA). It was done using hemisphere object locating proper position and orientation. According to our progress, we have started using it for custom stem designing, stem selection and stem size planning too since 1995. Since 2001, we have been using it for almost all THA cases. We also have started use it for any case we have question about 3D geometries. Since 2005 we started computer planed 2 staged THA after leg elongation for high riding hips and reported at ISTA 2007 too. Now our policy became that every tiny question we have, we shall analyze and plan preoperatively. In our population, the incidence of the developmental dysplastic hips is higher. The necks often have bigger anteversion, and less acetabular coverage. So we often use screws for cup fixation. The screw direction allowed in thin shell thickness is limited and less bone coverage makes good cup fixation difficult. With highly defected cases and with revision cases the situation is more difficult. In the present study, we have developed acetabular 3D preoperative planning method with screw direction, length, and for the cases with defect, cup supporter pre-shaping with models and prediction of the allograft volume. For the less defect cases, geometries of cup with screw holes were requested to the maker and were provided for us. Screws were attached perpendicular to each screw hole. Screw geometries have marks at every 5mm to plan proper length. The cup was located as much as closer to the original acetabular edge, keeping in the limit to avoid dislocation. Small space above the cup was accepted if anterior and posterior cup edge could be supported by original bone. Then the cup was rotated until we can obtain proper screw fixation. For the cases with severe defects, we use cup supporters and allografts. Cup supporters are designed to be bent and fit to the pelvis during the surgery. But to shape it a properly; for good coverage and strong support; is very difficult and takes long through the limited window with fatty gloves. And mean while we get more bleeding. The geometries were obtained by CAT scan of the devices. Then proper size was determined as cup size. Chemiwood model was made and proper size supporter was opened and bent preoperatively using the model. It was scanned again and compared to the pelvic geometry again. Using cluster cups, no dangerous screw was found as long as normal cup orientation was decided and screws were less than 30mm. Posterior screws were often too short then rotated anterior and found to have good fixation. Pre-bending could reduce surgical time remarkably. As long as we could know, no navigation system can control the cup rotation. But acetabular preoperative planning was very useful and could reduce operative invasion. It could be done easily without using navigation system.
The purpose of this study was to assess the long-term results (more than ten years) of two types of cemented ulnar component with type-5 Kudo total elbow arthroplasty in a consecutive series of 56 patients (60 elbows) with rheumatoid arthritis, and to compare the results in elbows above and below a Larsen grade IV. There was no radiolucency around the humeral component. Patients in whom a metal-backed ulnar component and a porous-coated stem were used had better clinical results and significantly less progression of radiolucent line formation around the ulnar component. They also had a significantly better long-term survival than patients with an all-polyethylene ulnar component. The clinical results of arthroplasty using all-polyethylene ulnar components were inferior, regardless of the degree of joint destruction. We conclude that the type-5 Kudo total elbow arthroplasty with cementless fixation of the porous-coated humeral component and cemented fixation of a metal-backed ulnar component is acceptable and well-tolerated by rheumatoid patients.
We evaluated the use of surgical stabilisation for atlantoaxial subluxation after a follow-up of 24 years in 50 rheumatoid patients who had some degree of pain but no major neurological deficit. The mortality of patients treated by atlantoaxial fusion was significantly lower than for those who received conservative treatment. The deaths resulted from infection or comorbid conditions. The significantly high relative risks of mortality from conservative treatment compared with surgical treatment were mutilating disease and susceptible factors on both of the HLA-DRB1 alleles. Relief from pain and neurological and functional recovery were better, and the radiological degree of atlantoaxial translocation was less in those who were surgically treated compared with those who were not. Two patients had superficial local infections after surgery. We conclude that prophylactic atlantoaxial fusion is better than conservative treatment in these patients.
We studied 99 patients who were undergoing total knee arthroplasty (TKA) to determine the optimum protocol for the administration of tranexamic acid (TNA) in order to reduce blood loss. It decreased by more than 40% after the administration of TNA. The haemostatic effect was greatest when TNA was given preoperatively and on deflation of the tourniquet. There was no increase in the incidence of adverse affects in the patients receiving TNA, compared with a control group. We conclude that two injections of TNA, one given preoperatively and one on deflation of the tourniquet, significantly reduce blood loss without increasing the risk of thromboembolic complications.