Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 86 - 86
1 Mar 2017
Weijia C Nagamine R Osano K Takayama M Todo M
Full Access

Introduction

The effect of each step of medial soft tissue releases on the external rotation angle of the femoral component was assessed during posterior stabilized total knee arthroplasty (PS-TKA) with modified gap control technique.

Methods

Consecutive 840 knees were assessed. During PS-TKA, medial soft tissue release was done to obtain rectangular gap in extension using tensors/balancers. The deep fiber of medial collateral ligament (MCL) was released in all cases. No more release was done in 464 knees. Only anterior fiber of superficial MCL was released in 49 knees, and only posterior fiber of superficial MCL was released in 129 knees. Both fibers were released in 169 knees. Additional pes anserinus was released in 29 knees. Rotation angle of the femoral component was decided based on the flexion gap angle. The angle was compared among the five groups.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 46 - 46
1 Mar 2017
Nagamine R Weijia C Todo M Osano K Takayama M Kawasaki M Kaneyama R
Full Access

Introduction

The hip-knee-ankle (HKA) angle between the mechanical axis of the femur (FM) and the mechanical axis of the tibia (TM) is the standard parameter to assess the coronal alignment of the lower extremity. TM is the line between the center of the tibial spines notch (Point T) and the center of the tibial plafond. However, this theory is based on the premise that TM coincides the anatomical axis of the tibia (TA). Fig.1a shows typical varus knee with medial shift of the tibial articular surface. In this case, TM does not coincide TA. Fig. 2 demonstrates the error of HKA angle when Point T locates medial to TA. Fig.2a shows normal alignment. Fig.2b shows varus alignment. Fig. 2c shows the tibia with medial shift of the tibial articular surface. The tibia has 7 degrees varus articular inclination in Fig.2b and 2c. However, HKA angle is 0 degree in Fig.2c. HKA angle underestimates varus deformity in knees with medial shift of the tibial articular surface. However, the degree of medial shift of the tibial articular surface is obscure. In this study, detailed anatomical configuration of the proximal tibia was evaluated. The effect of the value of HKA angle on the coronal alignment in TKA was then discussed.

Methods

This study consists of 117 knees. On the AP view radiograph of the tibia, three distance and two angle parameters were measured. Those were tibial articular surface width, distance between medial edge of the tibial articular surface and Point T, distance from TA to Point T. Angle between TM and TA, and the varus inclination angle of the tibial articular surface relative to the perpendicular line to TA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 4 - 4
1 Jan 2016
Todo M Abdullah AH Nakashima Y Iwamoto Y
Full Access

Bone remodeling effects is a significant issue in predicting long term stability of hip arthroplasty. It has been frequently observed around the femoral components especially with the implantation of prosthesis stem. Presence of the stiffer materials into the femur has altering the stress distribution and induces changes in the architecture of the bone. Phenomenon of bone resorption and bone thickening are the common reaction in total hip arthroplasty (THA) which leading to stem loosening and instability. The objectives of this study are (i) to develop inhomogeneous model of lower limbs with hip osteoarthritis and THA and (ii) to predict the bone resorption behavior of lower limbs for both cases.

Biomechanical evaluations of lower limbs are established using the finite element method in predicting bone remodeling process. Lower limbs CT-based data of 79 years old female with hip osteoarthritis (OA) are used in constructing three dimensional inhomogenous models. The FE model of lower limbs was consisted of sacrum, left and right ilium and both femur shaft. Bond between cartilage, acetabulum and femoral head, sacrum and ilium were assumed to be rigidly connected. The inhomogeneous material properties of the bone are determined from the Hounsfield unit of the CT image using commercial biomedical software. A load case of 60kg body weight was considered and fixed at the distal cut of femoral shaft. For THA lower limbs model, the left femur which suffering for hip OA was cut off and implanted with prosthesis stem. THA implant is designed to be Titanium alloy and Alumina for stem and femoral ball, respectively.

Distribution of young modulus of cross-sectional inhomogeneous model is presented in Fig. 2 while model of THA lower limbs also shown in Fig. 2. Higher values of young modulus at the outer part indicate hard or cortical bone. Prediction of bone resorption is discussed with the respect of bone mineral density (BMD). Changes in BMD at initial age to 5 years projection were simulated for hip OA and THA lower limbs models.

The results show different pattern of stress distribution and bone mineral density between hip OA lower limbs and THA lower limbs. Stress is defined to be dominant at prosthesis stem while femur experienced less stress and leading to bone resorption. Projection for 5 years follow up shows that the density around the greater tronchanter appears to decrease significantly.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 5 - 5
1 Jan 2016
Todo M Abdullah AH Nakashima Y Iwamoto Y
Full Access

Effectiveness and long term stability of hip resurfacing and total hip arthroplasty for osteoarthritis patients are still debated nowadays. Several clinical and biomechanical issues have to be considered, including pain relief, return to function, femoral neck fractures, impingement and prosthesis loosening. Normally, patients with hip arthroplasties are facing gait adaptation and at risk of fall. Sudden impact loading and twisting during sideway falls may lead to femoral fractures and joint failures. The purposes of this study are (i) to investigate the stress behavior of hip resurfacing and total hip arthroplasty, and (ii) to predict pattern of femoral fractures during sideway falls and twisting configurations.

Computed tomography (CT) based images of a 54-year old male were used in developing a 3D femoral model. The femur model was designed to be inhomogeneous material as defined by Hounsfield Unit of the CT images. CAD data of hip arthroplasties were imported and aligned to represent RHA and THA femur modelas shown in Fig.1. Prosthesis stem is modeled as Ti-6Al-4V material while femoral ball as Alumina properties. Meanwhile, RHA implant is assigned as Co-Cr-Mo material. Four types of loading and boundary conditions were assigned to demonstrate different falling (FC) and twisting (TC) configurations (see Fig.2). Finite element analysis combined with a damage mechanics model was then performed to predict bone fractures in both arthroplasty models. Different loading magnitudes up to 4BW were applied to extrapolate the fracture patterns.

Prediction of femoral fracture for RHA and THA femurs are discussed in corresponding to maximum principal stress and damage formation criterion. The load bearing strain was set to 3000micron, the physiological bone loading that leads to bone formation. The test strength was wet to 80% of the yield strength determined from the CT images. Different locations of fracture are predicted in each configuration due to different loading direction and boundary conditions as shown in Fig.3. For falling configurations, fractures were projected at trochanteric region for intact and RHA femur, while THA femurs experience fracture at inner proximal region of bone. Differs to twisting configurations, both arthroplasties were predicted to fracture at the distal end of femurs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 72 - 72
1 Jan 2016
Nagamine R Weijia C Patil S D'Lima D Todo M
Full Access

Introduction

The effect of each step of medial soft tissue release was assessed taking the expansion strength and patellar condition into account in five fresh frozen normal cadaver specimens.

Methods

In each cadaver specimen, only proximal tibia was cut. Then, ACL was cut, and deep MCL fiber was released. This condition was set as “the basic”. Joint gap distance and angle were measured at full extension, 30°, 60°, 90°, 120° flexion and in full flexion. The measurement was firstly done with the standard tensor/balancer with the patella everted, and the next with the offset tensor/balancer with the patella reduced. The torque of 10, 20 and 30 inch-pounds were applied through the specialized torque wrench. After the measurement in “the basic”, PCL, MCL superficial fibres, pes anserinus and semi-membranosus were released step by step. Measuring the joint gap distance and angle with the same scheme above were conducted after the each step.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 48 - 48
1 Jan 2016
Todo M Afzan M Anuar M Nagamine R Hirokawa S
Full Access

Introduction

Mobility at insert-tray articulations in mobile bearing knee implant accommodates lower cross-shear at polyethylene (PE) insert, which in turn reduces wear and delamination as well as decreasing constraint forces at implant-bone interfaces. Though, clinical studies disclosed damage due to wear has occurred at these mobile bearing articulations. The primary goal of this study is to investigate the effect of second articulations bearing mobility and surface friction at insert-tray interfaces to stress states at tibial post during deep flexion motion.

Method & Analysis

Figure 1 shows the 3-D computational aided drawing model and finite element model of implant used in this study. LS-DYNA software was employed to develop the dynamic model. Four conditions of models were tested including fixed bearing, as well as models with coefficients of friction of 0.04, 0.10 and 0.15 at tibial-tray interfaces to represent healthy and with debris appearance. A pair of nonlinear springs was positioned both anteriorly and posteriorly to represent ligamentous constraint. The dynamic model was developed to perform position driven motion from 0° to 135° of flexion angle with 0°, 10° and 15° of tibial rotation. The prosthesis components were subjected with a deep squatting force.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 446 - 446
1 Dec 2013
Nagamine R Weijia C Todo M Hirokawa S Kondo K Kawasaki M Osano K
Full Access

Purpose:

Differences in the sizes of femoral and tibial components between females and males, between osteoarthritis (OA) and rheumatoid arthritis (RA), and between measured bone resection and the gap control technique during TKA were assessed.

Method:

500 PS-TKAswith the Stryker NRG system in 408 cases were assessed. There were 83 male knees and 417 female knees, and 472 OA knees and 28 RA knees. This study was performed in Japan, and almost all OA knees had varus deformities. In each case, the sizes of the femoral and tibial components were measured on radiographs. The measured sizes represented those of the measured bone resection. TKA was performed by the gap control technique using a tensor/balancer with 30 inch-pounds expansion strength, and the sizes of the femoral and tibial components (used size) were recorded.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 277 - 277
1 Mar 2013
Nagamine R Hirokawa S Todo M Weijia C Kondo K
Full Access

Introduction

Reliability of a gap control technique with the tensor/balancer during PS-TKA was assessed by means of fluoroscopic images after TKA.

Methods

Thirty-one subjects were selected for assessment. The mean age of the subjects was 73.0 years old. During PS-TKA, a parapatellar approach was used. Cruciate ligaments were excised, and distal femoral and proximal tibial cuts were made. After all osteophytes were removed, the joint gap angle and distance were measured in full extension and at 90° flexion using a tensor/balancer. Medial soft tissue releases were performed and soft tissue balancing was obtained in full extension so that the joint gap angle was 3° or less than 3°. The joint gap angle and distance between femoral and tibial cut surfaces in full extension, and between a tangent to the posterior femoral condyles and tibial cut surface at 90° flexion were measured. The external rotation angle of the anterior and posterior cuts of the femur was decided based on the joint gap angle at 90° flexion. The size of the femoral component was decided based on the joint gap distance in full extension and at 90° flexion. Then only the trial femoral component was inserted. The joint gap angle and distance between the tangent to the condyles of the trial femoral component and tibial cut surface in full extension and at 90° flexion were measured.

More than one month after TKA, the fluoroscopic images of the prostheses were taken during knee extension/flexion. Then, a torque of about 5 Nm was applied to the lower leg in order to assess the varus/valgus flexibility during flexion. The pattern matching method was used to measure the 3D movements of the prostheses from the fluoroscopic images. The joint gap angle was calculated in full extension and at 90° flexion. The varus/valgus flexibility at each flexion angle was also assessed.