Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 358 - 358
1 Mar 2013
Verdonschot N Van Der Ploeg B Tarala M Homminga J Janssen D
Full Access

Introduction

Many finite element (FE) studies have been performed in the past to assess the biomechanical performance of TKA and THA components. The boundary conditions have often been simplified to a few peak loads. With the availability of personalized musculoskeletal (MS) models we becomes possible to estimate dynamic muscle and prosthetic forces in a patient specific manner. By combining this knowledge with FE models, truly patient specific failure analyses can be performed.

In this study we applied this combined technique to the femoral part of a cementless THR and calculated the cyclic micro-motions of the stem relative to the bone in order to assess the potential for bone ingrowth.

Methods

An FE model of a complete femur with a CLS Spotorno stem inserted was generated. An ideal fit between the implant and the bone was modeled proximally, whereas distally an interface gap of 100μm was created to simulate a more realistic interface condition obtained during surgery. Furthermore, a gait analysis was performed on a young subject and fed into the Anybody™ MS modeling system. The anatomical data set (muscle attachment points) used by the Anybody™ system was morphed to the shape of the femoral reconstruction. In this way a set of muscle attachment points was obtained which was consistent with the FE model. The predicted muscle and hip contact forces by the Anybody™ modeling system were dynamic and divided into 37 increments including two stance phases and a swing phase of the right leg.