Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 126 - 127
1 May 2011
Grimm B Vencken W Heyligers I
Full Access

Introduction: Increasing numbers and incidence rates of noisy (squeaking, scratching, clicking) ceramic-on-ceramic (CoC) total hip arthroplasties (THA) are being reported. The etiology seems to always involve stripe wear producing a stick-slip effect in the bearing which excites vibrations. As stripe wear is also found in silent CoC bearings, a theory has been developed that the vibrations become audible only via amplification through the vibrating stem (bell-clapper theory). This was supported by showing that the excitation frequency and the resonance frequency of the plain stem are similar. However, stem resonance in-vivo would be influenced by the periprosthetic bone damping and transmitting stem vibrations. Thus, if the bell-clapper theory were true, noisy CoC hips should show periprosthetic bone different to silent hips.

This study compares stem fit& fill and periprosthetic bone between noisy and silent CoC hips.

Methods: In a consecutive series of 186 primary CoC hips with identical stems, cups (Stryker ABG-II) and femoral heads (Alumina V40, 28mm) a survey identified 38 noisy hips (incidence rate: 20.4%, squeakers: n=23). Stem fit& fill and cortical wall thickness (CWT, medial and lateral) were measured on post-op AP x-rays according to the method of Kim & Kim. Measurements were repeated by a single blinded observer in a control group of silent hips matched for gender, age, stem size and follow-up time (4.6yrs). Fit& fill and CWT were compared between the noisy and silent group at proximal, mid-stem and distal level and on the medial and lateral side.

Results: The endosteal canal width was equal in noisy (N) and silent hips (S) at all levels (e.g. proximal: N=39.7+/−5.5mm, S=41.3+/−5.7mm). On the lateral side also cortical wall thickness (CWT) was the same at all levels (e.g. proximal: N=2.0+/−0.8mm, S=1.9+/−0.9mm). However, on the medial side, noisy hips had higher CWT at proximal (N=4.9+/−2.8mm, S=3.0+/−2.1mm, p< 0.01) and mid-stem level (N=6.2+/−2.1mm, N=4.6+/−1.7mm, p< 0.001). Also Fit& fill was slightly higher (proximal: N=66%, S=62%; mid-stem: N=63%, S=59%, p< 0.05). Differences and significance levels increased when only squeakers were considered.

Discussion: Despite equal endosteal canal widths and lateral cortical wall thickness for noisy and silent hips, noisy hips had sign. thicker medial walls at proximal (+63%) and mid-stem level (+35%) where also fit& fill was higher. This gives evidence that periprosthetic bone (PPB) may play a role in the development of audible noise in CoC hips by providing particular conditions of support, damping and transmission for an oscillating stem which influences noise frequency and intensity. Comparing PPB at different time points indicated that the differences are less due to post-op remodeling but more to pre-op conditions, surgical canal preparation and possibly stem design. The findings shall be verified by a DEXA study.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 65 - 65
1 Mar 2009
Geerdink C Grimm B Vencken W Tonino A Heyligers I
Full Access

Introduction: Wear of the polyethylene (PE) acetabular component is widely regarded as the primary factor limiting the longevity of total hip arthroplasties (THA). To compare wear patterns of different polyethylene inserts computer assisted measurement techniques for in vivo polyethylene wear were developed. This study was performed to investigate which software out of four programs is most precise and easy to use in daily clinical practice.

Materials and Methods: 24 anteroposterior digital radiographs of patients with a THA (Stryker ABG-II with N2Vac and Duration PE inserts in metal backed cups) with an average of 8.0 years follow-up were measured twice by a blinded single observer for linear wear (head penetration) in a single image analysis. Four computer assisted wear measurement methods were compared, the commercially available Martell Hip Analysis suite 7.14 and Rogan Hyperview, a not yet available Rogan beta-version called View Pro-X and Roman v1.70, freely available software to download from the internet. While both Rogan software can read the DICOM format from the hospital image server, images had to be converted for Martell (greyscale TIFF only) and Roman (any format).

The annual wear rates were compared and intra-observer variability was calculated as the difference between both measurements (precision). The average time it takes to measure one image (without format conversions) was documented and practicality of daily clinical use was evaluated.

Results: The annual wear rates measured were (mean +/− SD): Martell=0.09+/−0.21,, Hyperview=0.14 +/−0.10, Pro-X=0.12+/−0.07 Roman=0.12 +/−0.06. Martell was the only method measured negative wear (7/24 cases).

The precision was (mean +/− SD): Martell = 1.74+/−1.53, Hyperview = 0.36 +/−0.92, Pro-X = 0.10+/−0.11 Roman = 0.08 +/−0.08.

The average measuring time per image was: Martell = 94s, Hyperview = 94s, Pro-X = 92s Roman = 158s.

Discussion: The Roman method is the most precise and easiest to use in daily practice, but takes the longest time to measure. The Rogan View Pro-X software is nearly as precise and easy to use but not on the market yet. It is an improvement over the Hyperview which looses precision by using a elliptical interpolation necessary for non-metal backed cups instead of circular interpolation which is more precise for metal backed cups. The Mar-tell method produced the intolerable low precision and in some cases “negative wear”. Only on large patient groups it may produce realistic average wear rates. We found out that the Martell edge detection method, originally developed for scanned analogue x-rays, functions inferiorly with digital images, the coming hospital standard. Image processing (smoothening) of the digital x-rays did increase accuracy and precision. We recommend the Roman software, a digital version of the Livermore method, for precision, ease of use and cost.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 839 - 846
1 Jul 2008
Geerdink CH Grimm B Vencken W Heyligers IC Tonino AJ

We have compared four computer-assisted methods to measure penetration of the femoral head into the acetabular component in total hip replacement. These were the Martell Hip Analysis suite 7.14, Rogan HyperOrtho, Rogan View Pro-X and Roman v1.70. The images used for the investigation comprised 24 anteroposterior digital radiographs and 24 conventional acetate radiographs which were scanned to provide digital images. These radiographs were acquired from 24 patients with an uncemented total hip replacement with a follow-up of approximately eight years (mean 8.1; 6.3 to 9.1). Each image was measured twice by two blinded observers. The mean annual rates of penetration of the femoral head measured in the eight-year single image analysis were: Martell, 0.24 (SD 0.19); HyperOrtho, 0.12 (SD 0.08); View Pro-X, 0.12 (SD 0.06); Roman, 0.12 (SD 0.07). In paired analysis of the six-month and eight-year radiographs: Martell, 0.35 (SD 0.22); HyperOrtho, 0.15 (SD 0.13); View Pro-X, 0.11 (SD 0.06); Roman, 0.11 (SD 0.07). The intra- and inter-observer variability for the paired analysis was best for View Pro-X and Roman software, with intraclass correlations of 0.97, 0.87 and 0.96, 0.87, respectively, and worst for HyperOrtho and Martell, with intraclass correlations of 0.46, 0.13 and 0.33, 0.39, respectively.

The Roman method proved the most precise and the most easy to use in clinical practice and the software is available free of charge. The Martell method showed the lowest precision, indicating a problem with its edge detection algorithm on digital images.