Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 136 - 136
1 Apr 2019
Meynen A Verhaegen F Debeer P Scheys L
Full Access

Background

Degeneration of the shoulder joint is a frequent problem. There are two main types of shoulder degeneration: Osteoarthritis and cuff tear arthropathy (CTA) which is characterized by a large rotator cuff tear and progressive articular damage. It is largely unknown why only some patients with large rotator cuff tears develop CTA. In this project, we investigated CT data from ‘healthy’ persons and patients with CTA with the help of 3D imaging technology and statistical shape models (SSM). We tried to define a native scapular anatomy that predesignate patients to develop CTA.

Methods

Statistical shape modeling and reconstruction:

A collection of 110 CT images from patients without glenohumeral arthropathy or large cuff tears was segmented and meshed uniformly to construct a SSM. Point-to-point correspondence between the shapes in the dataset was obtained using non-rigid template registration. Principal component analysis was used to obtain the mean shape and shape variation of the scapula model. Bias towards the template shape was minimized by repeating the non-rigid template registration with the resulting mean shape of the first iteration.

Eighty-six CT images from patients with different severities of CTA were analyzed by an experienced shoulder surgeon and classified. CT images were segmented and inspected for signs of glenoid erosion. Remaining healthy parts of the eroded scapulae were partitioned and used as input of the iterative reconstruction algorithm. During an iteration of this algorithm, 30 shape components of the shape model are optimized and the reconstructed shape is aligned with the healthy parts. The algorithm stops when convergence is reached.