Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 219 - 219
1 Sep 2012
Wang QQ Wu JJ Unsworth A Simpson D Collins S Jarman-Smith M
Full Access

Introduction

Recent concerns over adverse effects of metal ion release, have led to the development of alternative hip joint replacements. This study reports the performance of new hemispherical MOTIS® (milled pitch-carbon fibre reinforced polyetheretherketone) acetabular cups articulating against Biolox Delta® femoral heads with the aim of producing lower wear and more biologically compatible bearings.

Materials and Methods

The wear performance of 40mm hemispherical MOTIS® cups articulating against Biolox Delta® heads has been investigated. The diametral clearance was 322±15.3nm (mean ± standard deviation). Wear tests were carried out on the Simplified Mark II Durham Hip Wear Simulator to 8 million cycles. New born bovine calf serum was used as the lubricant, diluted to give a protein content of 17g/l. Friction tests were carried out on the unworn joints and worn joints after 7.5 million cycles using lubricants containing protein (bovine serum based carboxymethyl cellulose (CMC) fluids) and without protein (water based CMC fluids). Temperature measured near every hip joint over a continuous wear testing period of 0.5 million cycles was recorded using PICO TC-08 data logger. One K-type thermocouple was placed carefully and consistently in each wear station and two were used to record the ambient room temperature. After stopping the wear test, the data logger continued recording the temperature for a further ten hours to indicate the cooling period. Additionally surface analyses were undertaken before and after wear testing using a non-contacting profilometer and atomic force (AFM) microscope.