The molecular mechanisms underlying non-union bone fractures largely remain elusive. Recently, spatial transcriptomics approaches for musculoskeletal tissue samples have been developed requiring direct placement of histology sections on barcoded slides. However, Formalin-Fixed-Paraffin-Embedded (FFPE) bone sections have been associated with limited RNA quality and read depth compared to soft tissue. Here, we test spatial transcriptomics workflows based on transcriptomic probe transfer to characterize molecular features discriminating non-union and union bone fractures in mice. Histological sections (n=8) used for spatial transcriptomics (Visium CytAssist FFPE; 10x Genomics, n=4 on glass slides, n=4 on hydrogel-coated slides) were obtained from a fracture healing study in female 20-week-old C57BL/6J mice receiving either a femur osteotomy (0.7mm) or a segmental defect (2.4mm) (license 22/2022, Grisons CH). Sequence alignment and manual segmentation of different tissues (bone, defect region/callus, bone marrow, muscle) were performed using SpaceRanger and LoupeBrowser (10x Genomics). Differential gene expression was performed using DESeq2 (Seurat) followed by Gene-Set-Enrichment-Analysis (GSEA) of Gene Ontology (ClusterProfiler). Group comparison of quality measures was done using a Welch's t-test. Results are given as mean±standard deviation.Background
Method
Immunomodulation represents a novel strategy to improve bone healing in combination with low doses of bone morphogenetic growth factors like BMP-2. This study aims to investigate the effect and timing of monoclonal anti-IL-1ß antibody administration with 1μg BMP-2 on bone healing over 14 weeks in a rat femur segmental defect model. 2 mm femoral defects were created in 22-27 weeks-old female Fischer F344 rats, internally fixed with a plate (animal license: GR/19/2022) using established protocols for analgesia and anesthesia. Animals (n=4/group) received either a collagen sponge, a collagen sponge+1μg BMP-2 (InductOs, Medtronic) or a collagen sponge+1μg BMP-2 with a monoclonal anti-IL-1ß antibody (BioXCell, 10 mg/ml), administered intravenously under anesthesia every third day until day 15, from day 0 or 3. Introduction
Method
Fracture healing is a spatially controlled process involving crosstalk of multiple tissues. To precisely capture and understand molecular mechanism underlying impaired healing, there is a need to integrate spatially-resolved molecular analyses into preclinical fracture healing models. I will present our recent data obtained by spatial transcriptomics of musculoskeletal samples from fracture healing studies in mice. Subsequently, I will show how spatial transcriptomics can be integrated into multimodal approaches in preclinical fracture healing models. In combination with established
Despite the major advances in osteosynthesis after trauma, there remains a small proportion of patients (<10%) who exhibit delayed healing and/or eventual progression to non-union. While known risk factors exist, e.g. advanced age or diabetes, the exact molecular mechanism underlying the impaired healing is largely unknown and identifying which specific patient will develop healing complications is still not possible in clinical practice. The talk will cover our novel multimodal approaches in small animals, which have the potential to precisely capture and understand biological changes during fracture healing on an individual basis. Via combining emerging omics technologies with our recently developed femur defect loading equipment in mice, we provide a platform to precisely link mechanical and molecular analyses during fracture healing.