Introduction:
Most cases of hip osteoarthritis (OA) are believed to be caused by alterations in joint contact mechanics resulting from pathomorphologies such as acetabular dysplasia and acetabular retroversion. Over the past 13 years, our research group has focused on developing approaches for patient-specific modeling of cartilage and labrum in the human hip, and applying these approaches to study hip pathomorphology. The long term objective is to improve the understanding of the etiology of OA related to hip pathomorphology, and to improve diagnosis and treatment. The objectives of this presentation are to provide a summary of our subject-specific modeling approach, and to describe the results of our analysis of hips from three populations of subjects: normal, traditional dysplastic, and retroverted.
Methods:
A combined experimental and computational protocol was used to investigate contact mechanics in ten normal subjects (normal center edge angles (CEA), no history of hip pain), ten subjects with hip pain secondary to acetabular dysplasia (CEA less than 25°), and ten patients with a radiographic crossover sign, pain and clinical exams consistent with acetabular retroversion. CT arthrography was used to image cartilage and bone. Volumetric image data were segmented and discretized, and subject-specific finite element models were produced using validated methods [Fig. 1]. Boundary and loading conditions were obtained from instrumented implant and gait data. Contact mechanics were evaluated on the acetabular cartilage and labrum. Labrum contact area and peak contact stress were evaluated. Cartilage contact area, peak and average contact stress were evaluated in six anatomical regions in the acetabulum.
This presentation will provide an overview of the interdisciplinary research program on hip pathomorphology at the University of Utah, including studies of dysplasia and femoracetabular impingement. The discussion will emphasize the implications of the research findings for hip preserving surgery
Kneeling and squatting are the most common “high-demand” activities actually performed on a routine basis by patients after TKR
After TKR, patients rarely participate in particularly demanding competitive sports, however, individualized exercise and fitness activities are common. As these activities vary extensively, surgeons are advised to ask individual patients which activities they enjoy for recreation and exercise to enable specific advice to be provided concerning possible impact on the durability of the prosthesis.