Today the use of pneumatic tourniquet is commonly accepted in total knee arthroplasty (TKA) to reduce perioperative blood loss. There are a few prospective randomised and nonrandomised studies that compare the effect of tourniquet release timing in cementless or cemented unilateral TKA. However, many of these studies show an inadequate reporting and methodology. This randomized prospective study was designed to investigate the efficiency of tourniquet release timing in preventing perioperative blood loss in a simultaneous bilateral TKA study design. To our knowledge, this is the first study of its kind, in which the effect of tourniquet release timing on perioperative blood loss was investigated in simultaneous bilateral cemented TKA. In 20 patients (40 knees) one knee was operated with tourniquet release and hemostasis before wound closure, and the other knee with tourniquet release after wound closure and pressure dressing. To determine the order of tourniquet release technique for simultaneous bilateral TKA, patients were randomized in two groups: ‘Group A’ first knee with tourniquet release and hemostasis before wound closure, and ‘Group B’ second knee with tourniquet release and hemostasis before wound closure. The blood loss was recorded 48 hours postoperative for each technique. We found no significant difference in total blood loss between both techniques (p =.930), but a significant difference in operating time (p =.035). There were no postoperative complications at a follow-up of 6 month. Other studies report an increase the blood loss in early tourniquet release and an increase the risk of early postoperative complications in deflation of tourniquet after wound closure. In this study we found no significant difference in perioperative blood loss and no increase of postoperative complications. Therefore, we recommend a tourniquet release after wound closure to reduce the duration of TKA procedure and to avoid possible risks of extended anaesthesia.
In a prospective study of primary TKA we compared environmental parameters of surgeries performed with and without the Navigator Concept.
As the long-term consequences of Vancouver A and B1 fractures are not fully known, the goal of this study now was to analyze the postoperative performance of non-cemented THA with respect to perioperative fractures.
In 20 skeletally mature female merino sheep, divided into four groups, we performed total medial meniscectomy, removal of the middle third of the patellar tendon, and tenotomy of the calcaneal tendon of the right hind leg. Group I (control) had no additional procedures. In the other three groups the medial meniscus was replaced by the middle third of the patellar tendon from the ipsilateral knee. The animals were killed at three (group II), six (group III), or 12 months (group IV) and the tendon-meniscus examined macroscopically, by light and scanning electron microscopy, and biomechanically. Remodelling of the tissue had taken place by 12 months but the failure stress and tensile modulus for the tendon-meniscus were lower than for the normal meniscus. Our evidence suggests that, in sheep, replacement of a meniscus by a tendon autograft may decrease the severity of the degenerative changes that occur after meniscectomy.