Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 5 - 5
1 Mar 2021
Mohtajeb M Cibere J Zhang H Wilson D
Full Access

Femoroacetabular impingement (FAI) deformities are a potential precursor to hip osteoarthritis and an important contributor to non-arthritic hip pain. Some hips with FAI deformities develop symptoms of pain in the hip and groin that are primarily position related. The reason for pain generation in these hips is unclear. Understanding potential impingement mechanisms in FAI hips will help us understand pain generation. Impingement between the femoral head-neck contour and acetabular rim has been proposed as a pathomechanism in FAI hips. This proposed pathomechanism has not been quantified with direct measurements in physiological postures. Research question: Is femoroacetabular clearance different in symptomatic FAI hips compared to asymptomatic FAI and control hips in sitting flexion, adduction, and internal rotation (FADIR) and squatting postures?

We recruited 33 participants: 9 with symptomatic FAI, 13 with asymptomatic FAI, and 11 controls from the Investigation of Mobility, Physical Activity, and Knowledge Translation in Hip Pain (IMAKT-HIP) cohort. We scanned each participant's study hip in sitting FADIR and squatting postures using an upright open MRI scanner (MROpen, Paramed, Genoa, Italy). We quantified femoroacetabular clearance in sitting FADIR and squatting using beta angle measurements which have been shown to be a reliable surrogate for acetabular rim pressures. We chose sitting FADIR and squatting because they represent, respectively, passive and active maneuvers that involve high flexion combined with internal/external rotation and adduction/abduction, which are thought to provoke impingement.

In the squatting posture, the symptomatic FAI group had a significantly smaller minimum beta angle (−4.6º±15.2º) than the asymptomatic FAI (12.5º ±13.2º) (P= 0.018) and control groups (19.8º ±8.6º) (P=0.001). In the sitting FADIR posture, both symptomatic and asymptomatic FAI groups had significantly smaller beta angles (−9.3º ±14º [P=0.010] and −3.9º ±9.7º [P=0.028], respectively) than the control group (5.7º ±5.7º).

Our results show loss of clearance between the femoral head-neck contour and acetabular rim (negative beta angle) occurred in symptomatic FAI hips in sitting FADIR and squatting. We did not observe loss of clearance in the asymptomatic FAI group for squatting, while we did observe loss of clearance for this group in sitting FADIR. These differences may be due to accommodation mechanisms in the active, squatting posture that are not present in the passive, sitting FADIR posture. Our results support the hypothesis that impingement between the femoral head-neck contour and acetabular rim is a pathomechanism in FAI hips leading to pain generation.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 6 - 6
1 Mar 2021
Stockton D Schmidt A Yung A Desrochers J Zhang H Masri B Wilson D
Full Access

It is unclear why ACL rupture increases osteoarthritis risk, regardless of ACL reconstruction. Our aims were: 1) to establish the reliability and accuracy of a direct method of determining tibiofemoral contact in vivo with UO-MRI, 2) to assess differences in knees with ACL rupture treated nonoperatively versus operatively, and 3) to assess differences in knees with ACL rupture versus healthy knees.

We recruited a convenience sample of patients with prior ACL rupture. Inclusion criteria were: 1) adult participants between 18–50 years old; 2) unilateral, isolated ACL rupture within the last five years; 3) if reconstructed, done within one year from injury; 4) intact cartilage; and 5) completed a graduated rehabilitation program culminating in return to sport or recreational activities. Participants were excluded if they had other ligament ruptures, osteoarthritis, an incompletely rehabilitated injury, were prohibited from undergoing MRI, or had a history of ACL re-rupture. Using the UO-MRI, we investigated tibiofemoral contact area, centroid location, and six degrees of freedom alignment under standing, weightbearing conditions with knees extended. We compared patients with ACL rupture treated nonoperatively versus operatively, and ACL ruptured knees versus healthy control knees. We assessed reliability using the intra-class correlation coefficient, and accuracy by comparing UO-MRI contact area with a 7Tesla MRI reference standard. We used linear mixed-effects models to test the effects of ACL rupture and ACL reconstruction on contact area. We used a paired t test for centroid location and alignment differences in ACL ruptured knees versus control knees, and the independent t test for differences between ACL reconstruction and no reconstruction. Analyses were performed using R version 3.5.1. We calculated sample size based on a previous study that showed a contact area standard deviation of 13.6mm2, therefore we needed eight or more knees per group to detect a minimum contact area change of 20mm2with 80% power and an α of 0.05.

We recruited 18 participants with ACL rupture: eight treated conservatively and 10 treated with ACL reconstruction. There were no significant differences between the operative and nonoperative ACL groups in terms of age, gender, BMI, time since injury, or functional knee scores (IKDC and KOOS). The UO-MRI demonstrated excellent inter-rater, test-retest, and intra-rater reliability with ICCs for contact area and centroid location ranging from 0.83–1.00. Contact area measurement was accurate to within 5% measurement error. At a mean 2.7 years after injury, we found that ACL rupture was associated with a 10.4% larger medial and lateral compartment contact areas (P=0.001), with the medial centroid located 5.2% more posterior (P=0.001). The tibiae of ACL ruptured knees were 2.3mm more anterior (P=0.003), and 2.6° less externally rotated (P=0.010) relative to the femur, than contralateral control knees. We found no differences between ACL reconstructed and nonreconstructed knees.

ACL rupture was associated with significant mechanical changes 2.7 years out from injury, which ACL reconstruction did not restore. These findings may partially explain the equivalent risk of post-traumatic osteoarthritis in patients treated operatively and nonoperatively after ACL rupture.


Background

It is technically challenging to restore hip rotation center exactly in total hip arthroplasty (THA) for patients with end-stage osteoarthritis secondary to developmental dysplasia of the hip (DDH) due to the complicated acetabular morphology changes. In this study, we developed a new method to restore hip rotation center exactly and rapidly in THA with the assistance of three dimensional (3-D) printing technology.

Methods

Seventeen patients (21 hips) with end-stage osteoarthritis secondary to DDH who underwent THA were included in this study. Simulated operations were performed on 3-D printed hip models for preoperative planning. The Harris fossa and acetabular notches were recognized and restored to locate acetabular center. The agreement on the size of acetabular cup and bone defect between simulated operations and actual operations were analyzed. Clinical and radiographic outcomes were recorded and evaluated.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 24 - 24
1 Sep 2012
Schouten R Dvorak M Noonan V Zhang H Fisher C
Full Access

The aim of this study is to determine evidence-based guidelines on functional outcomes following common thoracolumbar injuries using a synthesis of systematic literature reviews and consensus expert opinion

A questionnaire was created comprising five cases representative of common thoracolumbar injuries (a thoracic compression fracture, a flexion distraction injury and burst fractures each with varied location, patient demographics and treatment strategies). For each scenario five questions about expected functional outcomes were posed. Questionnaires were distributed to the Spine Trauma Study Group. Responses were combined with available data from a systematic review of the same injuries and outcomes to create consensus evidence based guidelines.

The survey was completed by 31 (57%) of 53 surgeons representing 20 centres across North America. The systematic reviews identified 49 appropriate studies. One year following a L1 burst fracture, a heavy laborer, treated with protective mobilization (cast or brace) has a 40% chance of being pain free, 70% chance of regaining pre-injury range of motion, can expect to be re-employed within 4–6 months and be able to participate in high impact exercise and contact sport with no or minimal limitation. Length of inpatient stay averages 4–5 days. One year following posterior short segment stabilization of a L1 bust fracture in a college football player, there is an expected 45% chance of being pain free and 55% chance of regaining pre-injury ROM. While an ultimate return to high impact exercise and contact sports is anticipated, 32% of experts expect the injury to end a college football career.

Results for the other trauma scenarios are included.

This combination of literature and expert opinion represents the best available evidence on functional prognosis after thoracolumbar trauma. By providing consistent, accurate information surgeons and other care path providers will help patients develop realistic expectations, which may shape and improve their ultimate outcome.