Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 67 - 67
22 Nov 2024
Youf R Ruth S Mannala G Zhao Y Alt V Riool M
Full Access

Aim

In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and systemic antibiotic therapies, persistent biofilms involve various resistance mechanisms that contribute to therapeutic failures. The development of in vivo chronic BAI models to optimize antibiofilm treatments is a major challenge. Indeed, the biofilm pathogenicity and the host response need to be finely regulated, and compatible with the animal lifestyle. Previously, a Galleria mellonella larvae model for the formation of an early-stage biofilm on the surface of a Kirschner (K)-wire was established. In the present study, two models of mature biofilm using clinical Staphylococcus aureus strains were assessed: one related to contaminated K-wires (in vitro biofilm maturation) and the second to hematogenous infections (in vivo biofilm maturation). Rifampicin was used as a standard drug for antibiofilm treatment.

Method

In the first model, biofilms were formed following an incubation period (up to 7 days) in the CDC Biofilm Reactor (CBR, BioSurface Technologies). Then, after implantation of the pre-incubated K-wire in the larvae, rifampicin (80 mg/kg) was injected and the survival of the larvae was monitored. In the second model, biofilm formation was achieved after an incubation period (up to 7 days) inside the larvae and then, after removing the K-wires from the host, in vitro rifampicin susceptibility assays were performed (according to EUCAST).


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims

The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs.

Methods

The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%).


Aims

The optimal procedure for the treatment of ossification of the posterior longitudinal ligament (OPLL) remains controversial. The aim of this study was to compare the outcome of anterior cervical ossified posterior longitudinal ligament en bloc resection (ACOE) with posterior laminectomy and fusion with bone graft and internal fixation (PTLF) for the surgical management of patients with this condition.

Methods

Between July 2017 and July 2019, 40 patients with cervical OPLL were equally randomized to undergo surgery with an ACOE or a PTLF. The clinical and radiological results were compared between the two groups.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 2 - 2
1 Jun 2021
Tang H Wang S Zhou Y Li Y Zhao Y Shi H
Full Access

Introduction

The functional ante-inclination (AI) of the cup after total hip arthroplasty (THA) is a key component in the combined sagittal index (CSI) to predict joint stability after THA. To accurately predict AI, we deducted a mathematic algorithm between the radiographic anteversion (RA), radiographic inclincation (RI), pelvic tilting (PT), and AI. The current study aims (1) to validate the mathematic algorithm; (2) to convert the AI limits in the CSI index (standing AI ≤ 45°, sitting AI ≥ 41°) into coronal functional safe zone (CFSZ) and explore the influences of the stand-to-sit pelvic motion (PM) and pelvic incidence (PI) on CFSZ; (3) to locate a universal cup orientation that always fulfill the AI criteria of CSI safe zone for all patients or subgroups of PM(PM ≤ 10°, 10° < PM ≤ 30°, and PM > 30°) and PI (PI≤ 41°, 41°< PI ≤ 62°, and PI >62°), respectively.

Methods

A 3D printed phantom pelvic model was designed to simulate changing PT values. An acetabular cup was implanted with different RA, RI, and PT settings using robot assisted technique. We enrolled 100 consecutive patients who underwent robot assisted THA from April, 2019 to June, 2019 in our hospital. EOS images before THA and at 6-month follow-up were collected. AI angles were measured on the lateral view radiographs as the reference method. Mean absolute error (MAE), Bland-Altman analysis and linear regression were conducted to assess the accuracy of the AI algorithm for both the phantom and patient radiographic studies. The 100 patients were classified into three subgroups by PM and PI, respectively. Linear regression and ANOVA analysis were conducted to explore the relationship between the size of CFSZ, and PM and PI, respectively. Intersection of the CFSZ was conducted to identify if any universal cup orientation (RA, RI) existed for the CSI index.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1392 - 1398
3 Oct 2020
Zhao Y Tang X Yan T Ji T Yang R Guo W

Aims

There is a lack of evidence about the risk factors for local recurrence of a giant cell tumour (GCT) of the sacrum treated with nerve-sparing surgery, probably because of the rarity of the disease. This study aimed to answer two questions: first, what is the rate of local recurrence of sacral GCT treated with nerve-sparing surgery and second, what are the risk factors for its local recurrence?

Methods

A total of 114 patients with a sacral GCT who underwent nerve-sparing surgery at our hospital between July 2005 and August 2017 were reviewed. The rate of local recurrence was determined, and Kaplan-Meier survival analysis carried out to evaluate the mean recurrence-free survival. Possible risks factors including demographics, tumour characteristics, adjuvant therapy, operation, and laboratory indices were analyzed using univariate analysis. Variables with p < 0.100 in the univariate analysis were further considered in a multivariate Cox regression analysis to identify the risk factors.


Bone & Joint Research
Vol. 5, Issue 5 | Pages 169 - 174
1 May 2016
Wang Y Chu M Rong J Xing B Zhu L Zhao Y Zhuang X Jiang L

Objectives

Previous genome-wide association studies (GWAS) have reported significant association of the single nucleotide polymorphism (SNP) rs8044769 in the fat mass and obesity-associated gene (FTO) with osteoarthritis (OA) risk in European populations. However, these findings have not been confirmed in Chinese populations.

Methods

We systematically genotyped rs8044769 and evaluated the association between the genetic variants and OA risk in a case-controlled study including 196 OA cases and 442 controls in a northern Chinese population. Genotyping was performed using the Sequenom MassARRAY iPLEX platform.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 205 - 205
1 Jul 2014
Yeung K Zhao Y Li P Xu Z Chu P
Full Access

Summary Statement

3D porous and nano-structured polyetheretherketone (PEEK) surface embedded with biofunctional groups can not only induce the up-regulation of osteogenic genes and proteins in-vitro, but also help promote new bone formation in-vivo.

Introduction

Porous biomaterials with three-dimensional (3D) surface structure can enhance biological functionalities especially in bone tissue engineering. Many techniques have hitherto been utilised to fabricate porous structures on metal surfaces, including machining, shotblasting, anodic oxidation, alkali treatment and acid-etching. However, it has been difficult to accomplish this on polyetheretherketone (PEEK) due to its inherent chemical inertness. In this study, we have applied a method comprising of sulfonation and water immersion to establish a 3D porous and nanostructured network on the PEEK surface. This newly established 3D network embedded with bio-functional groups can help promote new bone formation in-vivo.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 295 - 296
1 May 2009
Zhao Y Jones AC Wijayathunga VN Jin ZM Wilcox RK
Full Access

Purpose: Subject-specific computational models of anatomical components can now be generated from image data and used in the assessment of orthopaedic interventions. Whilst such models are becoming more commonplace, there are few studies that have investigated the effects of element size or the level of morphological detail that is required to model complex hierarchical structures such as trabecular bone [1,2]. The purpose of this study was to investigate the modelling of the mechanical properties of a trabecular-like material under compression, and in particular to evaluate the relationship between the grey-scale dependent density, determined from microCT, and the elastic modulus at different levels of mesh density.

Materials and Methods: A specific open cell rigid foam (pcf 7.5, Sawbone, Sweden), with a porosity over 95% and cell size between 1.5 and 2.5 mm, was chosen to represent human cancellous bone. Five cylindrical specimens (24 mm diameter, 19 mm height) were compressed under a maximum displacement of 0.35 mm in a materials testing machine. All the specimens were imaged by microCT (ƒÝCT80, Scanco Medical, Switzerland) before the test to provide the geometry and greyscale distribution. Corresponding finite element models of each specimen were generated using proprietary software (ScanFE, Simpleware, UK) with an element size of 1.5 mm. The elastic modulus of each element was based on the image greyscale using a conversion factor that was determined, through trial-and-error, by matching the predicted displacement with the experimental measurement in the linear region (> 0.2 mm). For each specimen, models of higher and lower mesh densities were constructed by down-sampling the microCT output to different levels. The smallest element size was limited to 0.5 mm due to computational restrictions, however a smaller 8 mm cube of the material was also analysed, with element sizes down to 0.25 mm.

Results: From the experimental tests, the mean apparent elastic modulus of the specimens was found to be 15 MPa, as compared with 18 MPa specified by the manufacturer. For the computational models, the predicted elastic modulus of the whole specimen models was found to decrease with decreasing element size. In particular, there was a large drop in the predicted values when the element size was of the same order as the cell size. With larger elements, the results indicated some convergence and there was reasonable agreement with the experimental results. For the cube model with smaller element sizes, the predicted moduli values again appeared to converge as the element size was reduced to 0.25 mm.

Conclusion: The results of this study show that the optimum conversion factor from an image greyscale value to an elastic modulus varies with element size. If the finite element method is to be used effectively to model bone, then the mesh size must either be sufficiently large to use a continuum approach or sufficiently small to capture the behaviour of the individual trabeculae. Different conversion factors will be required to determine the material properties from the image greyscale in each case.