Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters. We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.Aims
Methods
Osteoarthrosis (OA) is often considered to be due to “wear and tear”, aggravated by obesity. However, if developmental dysplasia of the hip (DDH) is treated incorrectly, osteoarthrosis can also occur at a very young age. We obtained cartilage from the femoral head a 23 year-old female after arthroplasty for DDH; from a 14 year-old male, resected for paralytic dislocation, and from OA and control patients. This provided a unique opportunity to compare the cellular and epigenetic features of OA in older patients with those in a young control as well as a DDH patient. We have recently defined the cellular and epigenetic features of idiopathic OA, in particular the association between induction of proteases and loss of DNA methylation in the respective promoter regions ( The cartilage of the 14-year old showed high cellularity and absence of immunostaining for all proteases investigated. Apart from the higher cellularity, this was similar to the ‘control’ cartilage obtained from patients with a fracture of the femoral neck. We had previously shown that, as OA progresses, more chondrocytes become immunopositive for the degradative enzymes and these cells divide so that in the typical clones of OA all cells synthesize the proteases. The cartilage from the 23-year old DDH patient showed extensive loss of proteoglycans from the superficial zone and fibrous repair tissue covered some areas. Nearly all chondrocytes produced the proteases and clones had formed, as in idiopathic OA. Since these sample were from the base of the femoral neck, where in idiopathic OA good cartilage often remains even in severe OA, the disease process must have reached an early end-stage in this young patient. The findings indicate that severe OA, as defined by the presence of clones that produce degradative enzymes, can develop very quickly. Interestingly, the expression and synthesis of degradative enzymes by OA chondrocytes was the same in juvenile and old-age OA. and their abnormal expression was associated with “unsilencing” via DNA demethylation in both juvenile and old-age OA. The results thus suggest that age per se is not a major determinant of OA progression.