Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Bone & Joint 360
Vol. 12, Issue 2 | Pages 6 - 9
1 Apr 2023
O’Callaghan J Afolayan J Ochieng D Rocos B


Bone & Joint 360
Vol. 11, Issue 3 | Pages 9 - 11
1 Jun 2022
Foxall-Smith M


Bone & Joint 360
Vol. 2, Issue 1 | Pages 6 - 11
1 Feb 2013
Saw K Jee CS

Modern athletes are constantly susceptible to performance-threatening injury as they push their bodies to greater limits and endure higher physical stresses. Loss of performance and training time can adversely and permanently affect a sportsperson’s career. Now more than ever with advancing medical technology the answer may lie in biologic therapy. We have been using peripheral blood stem cells (PBSC) clinically and have been able to demonstrate that stem cells differentiate into target cells to enable regenerative repair. The potential of this technique as a regenerative agent can be seen in three broad applications: 1) articular cartilage, 2) bone and 3) soft tissue. This article highlights the successful cases, among many, in all three of these applications


Bone & Joint 360
Vol. 9, Issue 6 | Pages 5 - 11
1 Dec 2020
Sharma V Turmezei T Wain J McNamara I


Bone & Joint 360
Vol. 9, Issue 5 | Pages 10 - 12
1 Oct 2020
Giddins GEB


Bone & Joint 360
Vol. 7, Issue 6 | Pages 2 - 8
1 Dec 2018
Murray IR Safran MR LaPrade RF


Bone & Joint 360
Vol. 5, Issue 6 | Pages 2 - 6
1 Dec 2016
Coughlin TA


Bone & Joint 360
Vol. 5, Issue 3 | Pages 2 - 6
1 Jun 2016
Raglan M Scammell B


Bone & Joint 360
Vol. 2, Issue 1 | Pages 2 - 5
1 Feb 2013
Khan M Roberts S Richardson JB McCaskie A

Stem cells are a key component of regenerative medicine strategies. Particular areas of musculoskeletal application include cartilage and bone regeneration in arthritis and trauma. There are several types of stem cell and this article will focus on the adult derived cells. The review includes current issues and future developments.


Bone & Joint 360
Vol. 4, Issue 3 | Pages 2 - 6
1 Jun 2015
Sahota O

Clinical studies evaluating the effects of vitamin D alone or in combination with calcium on physical function, falls and fractures have been inconsistent. Vitamin D has, however, been the focus of much orthopaedic, trauma and endocrine research. Playing a central role in muscle and bone metabolism, some studies on Vitamin D therapies offer the tantalising suggestion of a reduction in falls and fractures simply with vitamin D supplementation. We review the background and evidence behind vitamin D.


Bone & Joint 360
Vol. 1, Issue 4 | Pages 5 - 7
1 Aug 2012
Rajasekaran S

In 2006, approximately 1.3 million peer-reviewed scientific articles were published, aided by a large rise in the number of available scientific journals from 16 000 in 2001 to 23 750 by 2006. Is this evidence of an explosion in scientific knowledge or just the accumulation of wasteful publications and junk science? Data show that only 45% of the articles published in the 4500 top scientific journals are cited within the first five years of publication, a figure that is dropping steadily. Only 42% receive more than one citation. For better or for worse, “Publish or Perish” appears here to stay as the number of published papers becomes the basis for selection to academic positions, for tenure and promotions, a criterion for the awarding of grants and also the source of funding for salaries. The high pressure to publish has, however, ushered in an era where scientists are increasingly conducting and publishing data from research performed with ‘questionable research practices’ or even committing outright fraud. The few cases which are reported will in fact be the tip of an iceberg and the scientific community needs to be vigilant against this corruption of science.


Bone & Joint 360
Vol. 1, Issue 1 | Pages 2 - 6
1 Feb 2012
Hogervorst T

Osteoarthritis is extremely common and many different causes for it have been described. One such cause is abnormal morphology of the affected joint, the hip being a good example of this. For those joints with femoroacetabular impingement (FAI) or developmental dysplasia of the hip (DDH), a link with subsequent osteoarthritis seems clear. However, far from being abnormal, these variants may be explained by evolution, certainly so for FAI, and may actually be normal rather than representing deformity or disease. The animal equivalent of FAI is coxa recta, commonly found in species that run and jump. It is rarely found in animals that climb and swim. In contrast are the animals with coxa rotunda, a perfectly spherical femoral head, and more in keeping with the coxa profunda of mankind. This article describes the evolutionary process of the human hip and its link to FAI and DDH. Do we need to worry after all?