Advertisement for orthosearch.org.uk
Results 1 - 16 of 16
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1736 - 1741
1 Nov 2021
Tolk JJ Eastwood DM Hashemi-Nejad A

Aims

Perthes’ disease (PD) often results in femoral head deformity and leg length discrepancy (LLD). Our objective was to analyze femoral morphology in PD patients at skeletal maturity to assess where the LLD originates, and evaluate the effect of contralateral epiphysiodesis for length equalization on proximal and subtrochanteric femoral lengths.

Methods

All patients treated for PD in our institution between January 2013 and June 2020 were reviewed retrospectively. Patients with unilateral PD, LLD of ≥ 5 mm, and long-leg standing radiographs at skeletal maturity were included. Total leg length, femoral and tibial length, articulotrochanteric distance (ATD), and subtrochanteric femoral length were compared between PD side and the unaffected side. Furthermore, we compared leg length measurements between patients who did and who did not have a contralateral epiphysiodesis.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1412 - 1418
3 Oct 2020
Ballhause TM Stiel N Breyer S Stücker R Spiro AS

Aims

Eight-plates are used to correct varus-valgus deformity (VVD) or limb-length discrepancy (LLD) in children and adolescents. It was reported that these implants might create a bony deformity within the knee joint by change of the roof angle (RA) after epiphysiodesis of the proximal tibia following a radiological assessment limited to anteroposterior (AP) radiographs. The aim of this study was to analyze the RA, complemented with lateral knee radiographs, with focus on the tibial slope (TS) and the degree of deformity correction.

Methods

A retrospective, single-centre study was conducted. The treatment group (n = 64 knees in 44 patients) was subclassified according to the implant location in two groups: 1) medial hemiepiphysiodesis; and 2) lateral hemiepiphysiodesis. A third control group consisted of 25 untreated knees. The limb axes and RA were measured on long standing AP leg radiographs. Lateral radiographs of 40 knees were available for TS analysis. The mean age of the patients was 10.6 years (4 to 15) in the treatment group and 8.4 years (4 to 14) in the control group. Implants were removed after a mean 1.2 years (0.5 to 3).


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 239 - 245
1 Feb 2020
Nogaro M Abram SGF Alvand A Bottomley N Jackson WFM Price A

Aims

Anterior cruciate ligament (ACL) surgery in children and the adolescent population has increased steadily over recent years. We used a national database to look at trends in ACL reconstruction and rates of serious complications, growth disturbance, and revision surgery, over 20 years.

Methods

All hospital episodes for patients undergoing ACL reconstruction, under the age of 20 years, between 1 April 1997 and 31 March 2017, were extracted by procedure code from the national Hospital Episode Statistics (HES). Population standardized rates of intervention were determined by age group and year of treatment. Subsequent rates of serious complications including reoperation for infection, growth disturbance (osteotomy, epiphysiodesis), revision reconstruction, and/or contralateral ACL reconstruction rates were determined.


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1112 - 1116
1 Aug 2018
Sinha R Weigl D Mercado E Becker T Kedem P Bar-On E

Aims

Guided growth using eight-plates is commonly used for correction of angular limb deformities in growing children. The principle is of tethering at the physeal periphery while enabling growth in the rest of the physis. The method is also applied for epiphysiodesis to correct limb-length discrepancy (LLD). Concerns have been raised regarding the potential of this method to create an epiphyseal deformity. However, this has not been investigated. The purpose of this study was to detect and quantify the occurrence of deformities in the proximal tibial epiphysis following treatment with eight-plates.

Patients and Methods

A retrospective study was performed including 42 children at a mean age of 10.8 years (3.7 to 15.7) undergoing eight-plate insertion in the proximal tibia for correction of coronal plane deformities or LLD between 2007 and 2015. A total of 64 plates were inserted; 48 plates (34 patients) were inserted to correct angular deformities and 16 plates (8 patients) for LLD. Medical records, Picture Archive and Communication System images, and conventional radiographs were reviewed. Measurements included interscrew angle, lateral and medial plateau slope angles measured between the plateau surface and the line between the ends of the physis, and tibial plateau roof angle defined as 180° minus the sum of both plateau angles. Measurements were compared between radiographs performed adjacent to surgery and those at latest follow-up, and between operated and non-operated plateaus. Statistical analysis was performed using BMDP Statistical Software.


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 378 - 386
1 Mar 2018
Campanacci DA Totti F Puccini S Beltrami G Scoccianti G Delcroix L Innocenti M Capanna R

Aims

After intercalary resection of a bone tumour from the femur, reconstruction with a vascularized fibular graft (VFG) and massive allograft is considered a reliable method of treatment. However, little is known about the long-term outcome of this procedure. The aims of this study were to determine whether the morbidity of this procedure was comparable to that of other reconstructive techniques, if it was possible to achieve a satisfactory functional result, and whether biological reconstruction with a VFG and massive allograft could achieve a durable, long-lasting reconstruction.

Patients and Methods

A total of 23 patients with a mean age of 16 years (five to 40) who had undergone resection of an intercalary bone tumour of the femur and reconstruction with a VFG and allograft were reviewed clinically and radiologically. The mean follow-up was 141 months (24 to 313). The mean length of the fibular graft was 18 cm (12 to 29). Full weight-bearing without a brace was allowed after a mean of 13 months (seven to 26).


The Bone & Joint Journal
Vol. 95-B, Issue 7 | Pages 993 - 1000
1 Jul 2013
Lee SC Shim JS Seo SW Lim KS Ko KR

We compared the accuracy of the growth remaining method of assessing leg-length discrepancy (LLD) with the straight-line graph method, the multiplier method and their variants. We retrospectively reviewed the records of 44 patients treated by percutaneous epiphysiodesis for LLD. All were followed up until maturity. We used the modified Green–Anderson growth-remaining method (Method 1) to plan the timing of epiphysiodesis. Then we presumed that the other four methods described below were used pre-operatively for calculating the timing of epiphysiodesis. We then assumed that these four methods were used pre-operatively. Method 2 was the original Green–Anderson growth-remaining method; Method 3, Paley’s multiplier method using bone age; Method 4, Paley’s multiplier method using chronological age; and Method 5, Moseley’s straight-line graph method. We compared ‘Expected LLD at maturity with surgery’ with ‘Final LLD at maturity with surgery’ for each method. Statistical analysis revealed that ‘Expected LLD at maturity with surgery’ was significantly different from ‘Final LLD at maturity with surgery’. Method 2 was the most accurate. There was a significant correlation between ‘Expected LLD at maturity with surgery’ and ‘Final LLD at maturity with surgery’, the greatest correlation being with Method 2. Generally all the methods generated an overcorrected value. No method generates the precise ‘Expected LLD at maturity with surgery’. It is essential that an analysis of the pattern of growth is taken into account when predicting final LLD. As many additional data as possible are required.

Cite this article: Bone Joint J 2013;95-B:993–1000.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 855 - 860
1 Jun 2013
Gottliebsen M Møller-Madsen B Stødkilde-Jørgensen H Rahbek O

Permanent growth arrest of the longer bone is an option in the treatment of minor leg-length discrepancies. The use of a tension band plating technique to produce a temporary epiphysiodesis is appealing as it avoids the need for accurate timing of the procedure in relation to remaining growth. We performed an animal study to establish if control of growth in a long bone is possible with tension band plating. Animals (pigs) were randomised to temporary epiphysiodesis on either the right or left tibia. Implants were removed after ten weeks. Both tibiae were examined using MRI at baseline, and after ten and 15 weeks. The median interphyseal distance was significantly shorter on the treated tibiae after both ten weeks (p = 0.04) and 15 weeks (p = 0.04). On T1-weighted images the metaphyseal water content was significantly reduced after ten weeks on the treated side (p = 0.04) but returned to values comparable with the untreated side at 15 weeks (p = 0.14). Return of growth was observed in all animals after removal of implants.

Temporary epiphysiodesis can be obtained using tension band plating. The technique is not yet in common clinical practice but might avoid the need for the accurate timing of epiphysiodesis.

Cite this article: Bone Joint J 2013;95-B:855–60.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 270 - 275
1 Feb 2012
Ilharreborde B Gaumetou E Souchet P Fitoussi F Presedo A Penneçot GF Mazda K

Percutaneous epiphysiodesis using transphyseal screws (PETS) has been developed for the treatment of lower limb discrepancies with the aim of replacing traditional open procedures. The goal of this study was to evaluate its efficacy and safety at skeletal maturity. A total of 45 consecutive patients with a mean skeletal age of 12.7 years (8.5 to 15) were included and followed until maturity. The mean efficacy of the femoral epiphysiodesis was 35% (14% to 87%) at six months and 66% (21% to 100%) at maturity. The mean efficacy of the tibial epiphysiodesis was 46% (18% to 73%) at six months and 66% (25% to 100%) at maturity. In both groups of patients the under-correction was significantly reduced between six months post-operatively and skeletal maturity. The overall rate of revision was 18% (eight patients), and seven of these revisions (87.5%) involved the tibia. This series showed that use of the PETS technique in the femur was safe, but that its use in the tibia was associated with a significant rate of complications, including a valgus deformity in nine patients (20%), leading us to abandon it in the tibia. The arrest of growth was delayed and the final loss of growth at maturity was only 66% of that predicted pre-operatively. This should be taken into account in the pre-operative planning.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 839 - 843
1 Jun 2011
Monsell FP Barnes JR Kirubanandan R McBride AMB

Survivors of infantile meningococcal septicaemia often develop progressive skeletal deformity as a result of physeal damage at many sites, particularly in the lower limb. Distal tibial physeal arrest typically occurs with sparing of the distal fibular physis leading to a rapidly progressive varus deformity. There have been reports of isolated cases of this deformity, but to our knowledge there have been no papers which specifically describe the development of the deformity and the options for treatment.

Surgery to correct this deformity is complex because of the patient’s age, previous scarring and the multiplanar nature of the deformity. The surgical goal is to restore leg-length equality and the mechanical axis at the end of growth. Surgery should be planned and staged throughout growth in order to achieve the best functional results.

We report our experience in six patients (seven ankles) with this deformity, who were managed by corrective osteotomy using a programmable circular fixator.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 12 - 18
1 Jan 2011
Eastwood DM Sanghrajka AP

Guiding growth by harnessing the ability of growing bone to undergo plastic deformation is one of the oldest orthopaedic principles. Correction of deformity remains a major part of the workload for paediatric orthopaedic surgeons and recently, along with developments in limb reconstruction and computer-directed frame correction, there has been renewed interest in surgical methods of physeal manipulation or ‘guided growth’. Manipulating natural bone growth to correct a deformity is appealing, as it allows gradual correction by non- or minimally invasive methods.

This paper reviews the techniques employed for guided growth in current orthopaedic practice, including the basic science and recent advances underlying mechanical physeal manipulation of both healthy and pathological physes.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 6 | Pages 851 - 857
1 Jun 2005
Davidson AW Hong A McCarthy SW Stalley PD

We treated 50 patients with bony malignancy by en-bloc resection, extracorporeal irradiation with 50 Gy and re-implantation of the bone segment.

The mean survivor follow-up was 38 months (12 to 92) when 42 patients were alive and without disease. There were four recurrences. The functional results were good according to the Mankin score (17 excellent, 13 good, nine fair, three failures), the Musculoskeletal Tumour Society score (mean 77) and the Toronto Extremity Salvage score (mean 81). There was solid union, but bone resorption was seen in some cases. The dose of radiation was lethal to all cells and produced a dead autograft of perfect fit.

Extracorporeal irradiation is a useful technique for limb salvage when there is reasonable residual bone stock. It allows effective re-attachment of tendons and produces a lasting biological reconstruction. There should be no risk of local recurrence or of radiotherapy-induced malignancy in the replanted bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 5 | Pages 710 - 715
1 May 2005
van Huyssteen AL Hastings CJ Olesak M Hoffman EB

We reviewed 34 knees in 24 children after a double-elevating osteotomy for late-presenting infantile Blount’s disease. The mean age of patients was 9.1 years (7 to 13.5).

All knees were in Langenskiöld stages IV to VI. The operative technique corrected the depression of the medial joint line by an elevating osteotomy, and the remaining tibial varus and internal torsion by an osteotomy just below the apophysis. In the more recent patients (19 knees), a proximal lateral tibial epiphysiodesis was performed at the same time.

The mean pre-operative angle of depression of the medial tibial plateau of 49° (40° to 60°) was corrected to a mean of 26° (20° to 30°), which was maintained at follow-up. The femoral deformity was too small to warrant femoral osteotomy in any of our patients. The mean pre-operative mechanical varus of 30.6° (14° to 66°) was corrected to 0° to 5° of mechanical valgus in 29 knees. In five knees, there was an undercorrection of 2° to 5° of mechanical varus. At follow-up a further eight knees, in which lateral epiphysiodesis was delayed beyond five months, developed recurrent tibial varus associated with fusion of the medial proximal tibial physis.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 236 - 240
1 Feb 2005
Belthur MV Bradish CF Gibbons PJ

Between 1990 and 2001, 24 children aged between 15 months and 11 years presented with late orthopaedic sequelae after meningococcal septicaemia. The median time to presentation was 32 months (12 to 119) after the acute phase of the disease. The reasons for referral included angular deformity, limb-length discrepancy, joint contracture and problems with prosthetic fitting. Angular deformity with or without limb-length discrepancy was the most common presentation. Partial growth arrest was the cause of the angular deformity. Multiple growth-plate involvement occurred in 14 children. The lower limbs were affected much more often than the upper. Twenty-three children underwent operations for realignment of the mechanical axis and limb-length equalisation. In 15 patients with angular deformity around the knee the deformity recurred. As a result we recommend performing a realignment procedure with epiphysiodesis of the remaining growth plate when correcting angular deformities.


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 2 | Pages 307 - 309
1 Mar 1997
Macnicol MF Gupta MS

A technique for epiphysiodesis using a cannulated tubesaw has been developed to combine the precision of the original Phemister method with newer percutaneous methods. The approach is unilateral, and requires minimal access. Reinsertion of the removed core of bone reduces haemorrhage from the defect and augments arrest of the growth plate.

In 35 patients treated by this method predicted discrepancies of 2 to 4.5 cm were reliably reduced to 0.7 ± 0.6 cm, with no serious complications. The timing of surgery is critical, and relies upon careful monitoring of the pattern of discrepancy over several years, using clinical and radiographic measurements. Undercorrection of the disparity in three patients was the direct result of late referral.


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 6 | Pages 1002 - 1004
1 Nov 1991
Maffulli N Fixsen J

We describe 11 children with fibular hypoplasia and three- or four-ray feet, two bilaterally. This deformity is a less severe form of the better known congenital short tibia with absent or dysplastic fibula. If the leg-length discrepancy is minor, no treatment or a simple orthosis are used. Epiphysiodesis or leg lengthening by callotasis is appropriate for mild to moderate discrepancy. If the foot is non-functional, or the projected leg-length discrepancy is too great, early amputation and a prosthesis are advised


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 2 | Pages 392 - 400
1 May 1968
Hall-Craggs ECB

1. Experimental epiphysiodesis was performed on either the upper or lower epiphysial cartilage of one tibia of young rabbits, the other tibia serving as a control.

2. Subsequent growth was observed at each epiphysis by radiography.

3. After both operations the normal deceleration of growth rate of the uninjured epiphysis on the experimental side was reduced and this epiphysis made a greater contribution than its control to the final length of the bone.

4. Serial sections of the injured epiphysis revealed that the arrest of growth was due to the formation of a narrow bony bridge between the epiphysial and metaphysial bone.

5. The additional growth of the uninjured epiphysis appeared to have a direct relationship to the deficiency of growth at the epiphysis that had been injured by operation.

6. The results may indicate the existence of a local system of growth control.