Aims. The aim of this large registry-based study was to compare mid-term survival rates of cemented femoral stems of different designs used in hemiarthroplasty for a fracture of the femoral neck. Patients and Methods. From the Norwegian Hip Fracture Register (NHFR), 20 532 primary cemented bipolar hemiarthroplasties, which were undertaken in patients aged > 70 years with a femoral neck fracture between 2005 and 2016, were included.
We prospectively followed 191 consecutive collarless
polished tapered (CPT) femoral stems, implanted in 175 patients
who had a mean age at operation of 64.5 years (21 to 85). At a mean
follow-up of 15.9 years (14 to 17.5), 86 patients (95 hips) were
still alive. The fate of all original stems is known. The 16-year
survivorship with re-operation for any reason was 80.7% (95% confidence
interval 72 to 89.4). There was no loss to follow-up, with clinical
data available on all 95 hips and radiological assessment performed
on 90 hips (95%). At latest follow-up, the mean Harris hip score
was 78 (28 to 100) and the mean Oxford hip score was 36 (15 to 48).
Stems subsided within the cement mantle, with a mean subsidence
of 2.1 mm (0.4 to 19.2). Among the original cohort, only one stem
(0.5%) has been revised due to aseptic loosening. In total seven
stems were revised for any cause, of which four revisions were required
for infection following revision of the acetabular component. A
total of 21 patients (11%) required some sort of revision procedure;
all except three of these resulted from failure of the acetabular
component. Cemented acetabular components had a significantly lower
revision burden (three hips, 2.7%) than Harris Galante uncemented
components (17 hips, 21.8%) (p <
0.001). The CPT stem continues to provide excellent radiological and
clinical outcomes at 15 years following implantation. Its results
are consistent with other polished tapered stem designs.
Polymethylmethacrylate remains one of the most enduring materials in orthopaedic surgery. It has a central role in the success of total joint replacement and is also used in newer techniques such as percutaneous vertebroplasty and kyphoplasty. This article describes the current uses and limitations of polymethylmethacrylate in orthopaedic surgery. It focuses on its mechanical and chemical properties and links these to its clinical performance. The behaviour of antibiotic-loaded bone cement are discussed, together with areas of research that are now shedding light upon the behaviour of this unique biomaterial.