Platelet-rich plasma (PRP) intra-articular injections may provide a simple and minimally invasive treatment for early-stage knee osteoarthritis (OA). This has led to an increase in its adoption as a treatment for knee OA, although there is uncertainty about its efficacy and benefit. We hypothesized that patients with early-stage symptomatic knee OA who receive multiple PRP injections will have better clinical outcomes than those receiving single PRP or placebo injections. A double-blinded, randomized placebo-controlled trial was performed with three groups receiving either placebo injections (Normal Saline), one PRP injection followed by two placebo injections, or three PRP injections. Each injection was given one week apart. Outcomes were prospectively collected prior to intervention and then at six weeks, three months, six months, and 12 months post-intervention. Primary outcome measures were Knee Injury and Osteoarthritis Outcome Score (KOOS) and EuroQol five-dimension five-level index (EQ-5D-5L). Secondary outcomes included visual analogue scale for pain and patient subjective assessment of the injections.Aims
Methods
Nerve transfer has become a common and often effective reconstructive strategy for proximal and complex peripheral nerve injuries of the upper limb. This case-based discussion explores the principles and potential benefits of nerve transfer surgery and offers in-depth discussion of several established and valuable techniques including: motor transfer for elbow flexion after musculocutaneous nerve injury, deltoid reanimation for axillary nerve palsy, intrinsic re-innervation following proximal ulnar nerve repair, and critical sensory recovery despite non-reconstructable median nerve lesions.Abstract
The widespread use of MRI has revolutionised
the diagnostic process for spinal disorders. A typical protocol
for spinal MRI includes T1 and T2 weighted sequences in both axial
and sagittal planes. While such an imaging protocol is appropriate
to detect pathological processes in the vast majority of patients,
a number of additional sequences and advanced techniques are emerging.
The purpose of the article is to discuss both established techniques
that are gaining popularity in the field of spinal imaging and to
introduce some of the more novel ‘advanced’ MRI sequences with examples
to highlight their potential uses. Cite this article:
The aim of this study was to assess the effect
of injecting genetically engineered chondrocytes expressing transforming
growth factor beta 1 (TGF-β1) into the knees of patients with osteoarthritis.
We assessed the resultant function, pain and quality of life. A total of 54 patients (20 men, 34 women) who had a mean age
of 58 years (50 to 66) were blinded and randomised (1:1) to receive
a single injection of the active treatment or a placebo. We assessed
post-treatment function, pain severity, physical function, quality
of life and the incidence of treatment-associated adverse events. Patients
were followed at four, 12 and 24 weeks after injection. At final follow-up the treatment group had a significantly greater
improvement in the mean International Knee Documentation Committee
score than the placebo group (16 points; -18 to 49, This technique may result in improved clinical outcomes, with
the aim of slowing the degenerative process, leading to improvements
in pain and function. However, imaging and direct observational
studies are needed to verify cartilage regeneration. Nevertheless,
this study provided a sufficient basis to proceed to further clinical testing. Cite this article:
The anatomy and microstructure of the menisci
allow the effective distribution of load across the knee. Meniscectomy
alters the biomechanical environment and is a potent risk factor
for osteoarthritis. Despite a trend towards meniscus-preserving
surgery, many tears are irreparable, and many repairs fail. Meniscal allograft transplantation has principally been carried
out for pain in patients who have had a meniscectomy. Numerous case
series have reported a significant improvement in patient-reported
outcomes after surgery, but randomised controlled trials have not
been undertaken. It is scientifically plausible that meniscal allograft transplantation
is protective of cartilage, but this has not been established clinically
to date. Cite this article:
Previous studies support the important role of
vascular endothelial growth factor (VEGF) and syndecan-4 in the pathogenesis
of osteoarthritis (OA). Both VEGF and syndecan-4 are expressed by
chondrocytes and both are involved in the regulation of matrix metalloproteinase-3,
resulting in the activation of aggrecanase II (ADAMTS-5), which
is essential in the pathogenesis of OA. However, the relationship
between VEGF and syndecan-4 has not been established. As a pilot
study, we assayed the expression of VEGF and syndecan-4 in cartilage
samples and cultured chondrocytes from osteoarthritic knee joints
and analysed the relationship between these two factors. Specimens were collected from 21 female patients (29 knees) who
underwent total knee replacement due to severe medial OA of the
knee (Kellgren–Lawrence grade 4). Articular cartilage samples, obtained
from bone and cartilage excised during surgery, were analysed and
used for chondrocyte culture. We found that the levels of expression
of VEGF and syndecan-4 mRNA did not differ significantly between
medial femoral cartilage with severe degenerative changes and lateral
femoral cartilage that appeared grossly normal (p = 0.443 and 0.622,
respectively). Likewise, the levels of expression of VEGF and syndecan-4
mRNA were similar in cultured chondrocytes from medial and lateral
femoral cartilage. The levels of expression of VEGF and syndecan-4
mRNAs were significantly and positively correlated in cartilage
explant (r = 0.601, p = 0.003) but not in cultured chondrocytes.
These results suggest that there is a close relationship between
VEGF and syndecan-4 in the cartilage of patients with OA. Further
studies are needed to determine the exact pathway by which these
two factors interact in the pathogenesis of OA. Cite this article:
Osteochondral lesions (OCLs) occur in up to 70%
of sprains and fractures involving the ankle. Atraumatic aetiologies have
also been described. Techniques such as microfracture, and replacement
strategies such as autologous osteochondral transplantation, or
autologous chondrocyte implantation are the major forms of surgical
treatment. Current literature suggests that microfracture is indicated
for lesions up to 15 mm in diameter, with replacement strategies
indicated for larger or cystic lesions. Short- and medium-term results
have been reported, where concerns over potential deterioration
of fibrocartilage leads to a need for long-term evaluation. Biological augmentation may also be used in the treatment of
OCLs, as they potentially enhance the biological environment for
a natural healing response. Further research is required to establish
the critical size of defect, beyond which replacement strategies
should be used, as well as the most appropriate use of biological augmentation.
This paper reviews the current evidence for surgical management
and use of biological adjuncts for treatment of osteochondral lesions
of the talus. Cite this article:
The belief that an intervertebral disc must degenerate
before it can herniate has clinical and medicolegal significance,
but lacks scientific validity. We hypothesised that tissue changes
in herniated discs differ from those in discs that degenerate without
herniation. Tissues were obtained at surgery from 21 herniated discs
and 11 non-herniated discs of similar degeneration as assessed by
the Pfirrmann grade. Thin sections were graded histologically, and
certain features were quantified using immunofluorescence combined
with confocal microscopy and image analysis. Herniated and degenerated
tissues were compared separately for each tissue type: nucleus, inner
annulus and outer annulus. Herniated tissues showed significantly greater
Treatment for osteoarthritis (OA) has traditionally
focused on joint replacement for end-stage disease. An increasing number
of surgical and pharmaceutical strategies for disease prevention
have now been proposed. However, these require the ability to identify
OA at a stage when it is potentially reversible, and detect small
changes in cartilage structure and function to enable treatment
efficacy to be evaluated within an acceptable timeframe. This has
not been possible using conventional imaging techniques but recent
advances in musculoskeletal imaging have been significant. In this
review we discuss the role of different imaging modalities in the
diagnosis of the earliest changes of OA. The increasing number of
MRI sequences that are able to non-invasively detect biochemical
changes in cartilage that precede structural damage may offer a
great advance in the diagnosis and treatment of this debilitating
condition. Cite this article:
Matrix metalloproteinases (MMPs), responsible
for extracellular matrix remodelling and angiogenesis, might play
a major role in the response of the growth plate to detrimental
loads that lead to overuse injuries in young athletes. In order
to test this hypothesis, human growth plate chondrocytes were subjected
to mechanical forces equal to either physiological loads, near detrimental
or detrimental loads for two hours. In addition, these cells were
exposed to physiological loads for up to 24 hours. Changes in the
expression of MMPs -2, -3 and -13 were investigated. We found that expression of MMPs in cultured human growth plate
chondrocytes increases in a linear manner with increased duration
and intensity of loading. We also showed for the first time that
physiological loads have the same effect on growth plate chondrocytes
over a long period of time as detrimental loads applied for a short
period. These findings confirm the involvement of MMPs in overuse injuries
in children. We suggest that training programmes for immature athletes
should be reconsidered in order to avoid detrimental stresses and
over-expression of MMPs in the growth plate, and especially to avoid
physiological loads becoming detrimental. Cite this article:
Hyaline articular cartilage has been known to
be a troublesome tissue to repair once damaged. Since the introduction
of autologous chondrocyte implantation (ACI) in 1994, a renewed
interest in the field of cartilage repair with new repair techniques
and the hope for products that are regenerative have blossomed.
This article reviews the basic science structure and function of
articular cartilage, and techniques that are presently available
to effect repair and their expected outcomes.
This article reviews the current knowledge of
the intervertebral disc (IVD) and its association with low back
pain (LBP). The normal IVD is a largely avascular and aneural structure
with a high water content, its nutrients mainly diffusing through
the end plates. IVD degeneration occurs when its cells die or become
dysfunctional, notably in an acidic environment. In the process
of degeneration, the IVD becomes dehydrated and vascularised, and
there is an ingrowth of nerves. Although not universally the case,
the altered physiology of the IVD is believed to precede or be associated
with many clinical symptoms or conditions including low back and/or
lower limb pain, paraesthesia, spinal stenosis and disc herniation. New treatment options have been developed in recent years. These
include biological therapies and novel surgical techniques (such
as total disc replacement), although many of these are still in
their experimental phase. Central to developing further methods
of treatment is the need for effective ways in which to assess patients
and measure their outcomes. However, significant difficulties remain
and it is therefore an appropriate time to be further investigating
the scientific basis of and treatment of LBP.
It is probable that both genetic and environmental
factors play some part in the aetiology of most cases of degenerative
hip disease. Geneticists have identified some single gene disorders
of the hip, but have had difficulty in identifying the genetics
of many of the common causes of degenerative hip disease. The heterogeneity
of the phenotypes studied is part of the problem. A detailed classification
of phenotypes is proposed. This study is based on careful documentation
of 2003 consecutive total hip replacements performed by a single
surgeon between 1972 and 2000. The concept that developmental problems
may initiate degenerative hip disease is supported. The influences
of gender, age and body mass index are outlined. Biomechanical explanations
for some of the radiological appearances encountered are suggested.
The body weight lever, which is larger than the abductor lever, causes
the abductor power to be more important than body weight. The possibility
that a deficiency in joint lubrication is a cause of degenerative
hip disease is discussed. Identifying the phenotypes may help geneticists
to identify genes responsible for degenerative hip disease, and
eventually lead to a definitive classification.
Advanced MRI cartilage imaging such as T1-rho
(T1ρ) for the diagnosis of early cartilage degradation prior to morpholgic
radiological changes may provide prognostic information in the management
of joint disease. This study aimed first to determine the normal
T1ρ profile of cartilage within the hip, and secondly to identify
any differences in T1ρ profile between the normal and symptomatic
femoroacetabular impingement (FAI) hip. Ten patients with cam-type
FAI (seven male and three female, mean age 35.9 years (28 to 48))
and ten control patients (four male and six female, mean age 30.6
years (22 to 35)) underwent 1.5T T1ρ MRI of a single hip. Mean T1ρ relaxation
times for full thickness and each of the three equal cartilage thickness
layers were calculated and compared between the groups. The mean
T1ρ relaxation times for full cartilage thickness of control and
FAI hips were similar (37.17 ms ( These results suggest that 1.5T T1ρ MRI can detect acetabular
hyaline cartilage changes in patients with FAI.
Peri-tendinous injection of local anaesthetic,
both alone and in combination with corticosteroids, is commonly performed
in the treatment of tendinopathies. Previous studies have shown
that local anaesthetics and corticosteroids are chondrotoxic, but
their effect on tenocytes remains unknown. We compared the effects
of lidocaine and ropivacaine, alone or combined with dexamethasone,
on the viability of cultured bovine tenocytes. Tenocytes were exposed
to ten different conditions: 1) normal saline; 2) 1% lidocaine;
3) 2% lidocaine; 4) 0.2% ropivacaine; 5) 0.5% ropivacaine; 6) dexamethasone
(dex); 7) 1% lidocaine+dex; 8) 2% lidocaine+dex; 9) 0.2% ropivacaine+dex;
and 10) 0.5% ropivacaine+dex, for 30 minutes. After a 24-hour recovery
period, the viability of the tenocytes was quantified using the
CellTiter-Glo viability assay and fluorescence-activated cell sorting
(FACS) for live/dead cell counts. A 30-minute exposure to lidocaine
alone was significantly toxic to the tenocytes in a dose-dependent
manner, but a 30-minute exposure to ropivacaine or dexamethasone
alone was not significantly toxic. Dexamethasone potentiated ropivacaine tenocyte toxicity at higher
doses of ropivacaine, but did not potentiate lidocaine tenocyte
toxicity. As seen in other cell types, lidocaine has a dose-dependent
toxicity to tenocytes but ropivacaine is not significantly toxic.
Although dexamethasone alone is not toxic, its combination with
0.5% ropivacaine significantly increased its toxicity to tenocytes.
These findings might be relevant to clinical practice and warrant
further investigation.
We attempted to characterise the biological quality
and regenerative potential of chondrocytes in osteochondritis dissecans
(OCD). Dissected fragments from ten patients with OCD of the knee
(mean age 27.8 years (16 to 49)) were harvested at arthroscopy.
A sample of cartilage from the intercondylar notch was taken from
the same joint and from the notch of ten patients with a traumatic
cartilage defect (mean age 31.6 years (19 to 52)). Chondrocytes
were extracted and subsequently cultured. Collagen types 1, 2, and
10 mRNA were quantified by polymerase chain reaction. Compared with
the notch chondrocytes, cells from the dissecate expressed similar
levels of collagen types 1 and 2 mRNA. The level of collagen type
10 message was 50 times lower after cell culture, indicating a loss
of hypertrophic cells or genes. The high viability, retained capacity
to differentiate and metabolic activity of the extracted cells suggests
preservation of the intrinsic repair capability of these dissecates.
Molecular analysis indicated a phenotypic modulation of the expanded
dissecate chondrocytes towards a normal phenotype. Our findings
suggest that cartilage taken from the dissecate can be reasonably
used as a cell source for chondrocyte implantation procedures.
We have used Fourier transform infrared spectroscopy (FTIR) to characterise the chemical and structural composition of the tendons of the rotator cuff and to identify structural differences among anatomically distinct tears. Such information may help to identify biomarkers of tears and to provide insight into the rates of healing of different sizes of tear. The infrared spectra of 81 partial, small, medium, large and massive tears were measured using FTIR and compared with 11 uninjured control tendons. All the spectra were classified using standard techniques of multivariate analysis. FTIR readily differentiates between normal and torn tendons, and different sizes of tear. We identified the key discriminating molecules and spectra altered in torn tendons to be carbohydrates/phospholipids (1030 cm−1 to 1200 cm−1), collagen (1300 cm−1 to 1700 cm−1 and 3000 cm−1 to 3350 cm−1) and lipids (2800 cm−1 to 3000 cm−1). Our study has shown that FTIR spectroscopy can identify tears of the rotator cuff of varying size based upon distinguishable chemical and structural features. The onset of a tear is mainly associated with altered structural arrangements of collagen, with changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used peri-operatively to determine the quality of the tendon and the extent of the disease, thus guiding surgical repair.
The aim of this study was to evaluate the cultivation potential of cartilage taken from the debrided edge of a chronic lesion of the articular surface. A total of 14 patients underwent arthroscopy of the knee for a chronic lesion on the femoral condyles or trochlea. In addition to the routine cartilage biopsy, a second biopsy of cartilage was taken from the edge of the lesion. The cells isolated from both sources underwent parallel cultivation as monolayer and three-dimensional (3D) alginate culture. The cell yield, viability, capacity for proliferation, morphology and the expressions of typical cartilage genes (collagen I, COL1; collagen II, COL2; aggrecan, AGR; and versican, VER) were assessed. The cartilage differentiation indices (COL2/COL1, AGR/VER) were calculated. The control biopsies revealed a higher mean cell yield (1346 cells/mg Our results suggest that the cultivation of chondrocytes solely from the edges of the lesion cannot be recommended for use in autologous chondrocyte implantation.
The patellofemoral joint is an important source of symptoms in osteoarthritis of the knee. We have used a newly designed surgical model of patellar strengthening to induce osteoarthritis in BALB/c mice and to establish markers by investigating the relationship between osteoarthritis and synovial levels of matrix metalloproteinases (MMPs). Osteoarthritis was induced by using this microsurgical technique under direct vision without involving the cavity of the knee. Degeneration of cartilage was assessed by the Mankin score and synovial tissue was used to determine the mRNA expression levels of MMPs. Irrigation fluid from the knee was used to measure the concentrations of MMP-3 and MMP-9. Analysis of cartilage degeneration was correlated with the levels of expression of MMP. After operation the patellofemoral joint showed evidence of mild osteoarthritis at eight weeks and further degenerative changes by 12 weeks. The level of synovial MMP-9 mRNA correlated with the Mankin score at eight weeks, but not at 12 weeks. The levels of MMP-2, MMP-3 and MMP-14 mRNA correlated with the Mankin score at 12 weeks. An increase in MMP-3 was observed from four weeks up to 16 weeks. MMP-9 was notably increased at eight weeks, but the concentration at 16 weeks had decreased to the level observed at four weeks. Our observations suggest that MMP-2, MMP-3 and MMP-14 could be used as markers of the progression of osteoarthritic change.
Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model.