Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 593 - 601
1 Jun 2023
Scott CEH Yapp LZ Howard T Patton JT Moran M

Periprosthetic femoral fractures are increasing in incidence, and typically occur in frail elderly patients. They are similar to pathological fractures in many ways. The aims of treatment are the same, including 'getting it right first time' with a single operation, which allows immediate unrestricted weightbearing, with a low risk of complications, and one that avoids the creation of stress risers locally that may predispose to further peri-implant fracture. The surgical approach to these fractures, the associated soft-tissue handling, and exposure of the fracture are key elements in minimizing the high rate of complications. This annotation describes the approaches to the femur that can be used to facilitate the surgical management of peri- and interprosthetic fractures of the femur at all levels using either modern methods of fixation or revision arthroplasty.

Cite this article: Bone Joint J 2023;105-B(6):593–601.


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 635 - 643
1 Apr 2021
Ross LA Keenan OJF Magill M Brennan CM Clement ND Moran M Patton JT Scott CEH

Aims. Debate continues regarding the optimum management of periprosthetic distal femoral fractures (PDFFs). This study aims to determine which operative treatment is associated with the lowest perioperative morbidity and mortality when treating low (Su type II and III) PDFFs comparing lateral locking plate fixation (LLP-ORIF) or distal femoral arthroplasty (DFA). Methods. This was a retrospective cohort study of 60 consecutive unilateral (PDFFs) of Su types II (40/60) and III (20/60) in patients aged ≥ 60 years: 33 underwent LLP-ORIF (mean age 81.3 years (SD 10.5), BMI 26.7 (SD 5.5); 29/33 female); and 27 underwent DFA (mean age 78.8 years (SD 8.3); BMI 26.7 (SD 6.6); 19/27 female). The primary outcome measure was reoperation. Secondary outcomes included perioperative complications, calculated blood loss, transfusion requirements, functional mobility status, length of acute hospital stay, discharge destination and mortality. Kaplan-Meier survival analysis was performed. Cox multivariate regression analysis was performed to identify risk factors for reoperation after LLP-ORIF. Results. Follow-up was at mean 3.8 years (1.0 to 10.4). One-year mortality was 13% (8/60). Reoperation was more common following LLP-ORIF: 7/33 versus 0/27 (p = 0.008). Five-year survival for reoperation was significantly better following DFA; 100% compared to 70.8% (95% confidence interval (CI) 51.8% to 89.8%, p = 0.006). There was no difference for the endpoint mechanical failure (including radiological loosening); ORIF 74.5% (56.3 to 92.7), and DFA 78.2% (52.3 to 100, p = 0.182). Reoperation following LLP-ORIF was independently associated with medial comminution; hazard ratio (HR) 10.7 (1.45 to 79.5, p = 0.020). Anatomical reduction was protective against reoperation; HR 0.11 (0.013 to 0.96, p = 0.046). When inadequately fixed fractures were excluded, there was no difference in five-year survival for either reoperation (p = 0.156) or mechanical failure (p = 0.453). Conclusion. Absolute reoperation rates are higher following LLP fixation of low PDFFs compared to DFA. Where LLP-ORIF was well performed with augmentation of medial comminution, there was no difference in survival compared to DFA. Though necessary in very low fractures, DFA should be used with caution in patients with greater life expectancies due to the risk of longer term aseptic loosening. Cite this article: Bone Joint J 2021;103-B(4):635–643


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 527 - 534
1 Apr 2010
Streubel PN Gardner MJ Morshed S Collinge CA Gallagher B Ricci WM

It is unclear whether there is a limit to the amount of distal bone required to support fixation of supracondylar periprosthetic femoral fractures. This retrospective multicentre study evaluated lateral locked plating of periprosthetic supracondylar femoral fractures and compared the results according to extension of the fracture distal with the proximal border of the femoral prosthetic component.

Between 1999 and 2008, 89 patients underwent lateral locked plating of a supracondylar periprosthetic femoral fracture, of whom 61 patients with a mean age of 72 years (42 to 96) comprising 53 women, were available after a minimum follow-up of six months or until fracture healing. Patients were grouped into those with fractures located proximally (28) and those with fractures that extended distal to the proximal border of the femoral component (33).

Delayed healing and nonunion occurred respectively in five (18%) and three (11%) of more proximal fractures, and in two (6%) and five (15%) of the fractures with distal extension (p = 0.23 for delayed healing; p = 0.72 for nonunion, Fisher’s exact test). Four construct failures (14%) occurred in more proximal fractures, and three (9%) in fractures with distal extension (p = 0.51). Of the two deep infections that occurred in each group, one resolved after surgical debridement and antibiotics, and one progressed to a nonunion.

Extreme distal periprosthetic supracondylar fractures of the femur are not a contra-indication to lateral locked plating. These fractures can be managed with internal fixation, with predictable results, similar to those seen in more proximal fractures.