Aims. This study addressed two questions: first, does surgical correction of an idiopathic scoliosis increase the volume of the rib cage, and second, is it possible to evaluate the change in lung function after corrective surgery for adolescent idiopathic scoliosis (AIS) using biplanar radiographs of the ribcage with
Aims. The aim of this study was to analyse the effect of altered viewing
perspectives on the measurement of the glenopolar angle (GPA) and
the differences between these measurements made on 3D CT reconstructions
and anteroposterior (AP) scapular view radiographs. . Materials and Methods. The influence of the viewing perspective on the GPA was assessed,
as were the differences in the measurements of the GPA between 3D
CT reconstructions and AP scapular view radiographs in 68 cadaveric
scapulae. Results. The median GPA in
Aims. The Wrightington classification system of fracture-dislocations of the elbow divides these injuries into six subtypes depending on the involvement of the coronoid and the radial head. The aim of this study was to assess the reliability and reproducibility of this classification system. Methods. This was a blinded study using radiographs and CT scans of 48 consecutive patients managed according to the Wrightington classification system between 2010 and 2018. Four trauma and orthopaedic consultants, two post CCT fellows, and one speciality registrar based in the UK classified the injuries. The seven observers reviewed preoperative radiographs and CT scans twice, with a minimum four-week interval. Radiographs and CT scans were reviewed separately. Inter- and intraobserver reliability were calculated using Fleiss and Cohen kappa coefficients. The Landis and Koch criteria were used to interpret the strength of the kappa values. Validity was assessed by calculating the percentage agreement against intraoperative findings. Results. Of the 48 patients, three (6%) had type A injury, 11 (23%) type B, 16 (33%) type B+, 16 (33%) Type C, two (4%) type D+, and none had a type D injury. All 48 patients had anteroposterior (AP) and lateral radiographs, 44 had 2D CT scans, and 39 had
Aims. Several radiological methods of measuring anteversion of the acetabular component after total hip arthroplasty (THA) have been described. These are limited by low reproducibility, are less accurate than CT
Aims. The morphology of medial malleolar fracture is highly variable and difficult to characterize without
Aims. Cross-table lateral (CTL) radiographs are commonly used to measure acetabular component anteversion after total hip arthroplasty (THA). The CTL measurements may differ by > 10° from CT scan measurements but the reasons for this discrepancy are poorly understood. Anteversion measurements from CTL radiographs and CT scans are compared to identify spinopelvic parameters predictive of inaccuracy. Methods. THA patients (n = 47; 27 males, 20 females; mean age 62.9 years (SD 6.95)) with preoperative spinopelvic mobility, radiological analysis, and postoperative CT scans were retrospectively reviewed. Acetabular component anteversion was measured on postoperative CTL radiographs and CT scans using
Aims. The aim of this study was to evaluate the accuracy of implant placement when using robotic assistance during total hip arthroplasty (THA). Patients and Methods. A total of 20 patients underwent a planned THA using preoperative CT scans and robotic-assisted software. There were nine men and 11 women (n = 20 hips) with a mean age of 60.8 years (. sd. 6.0). Pelvic and femoral bone models were constructed by segmenting both preoperative and postoperative CT scan images. The preoperative anatomical landmarks using the robotic-assisted system were matched to the postoperative
We describe the routine imaging practices of
Level 1 trauma centres for patients with severe pelvic ring fractures, and
the interobserver reliability of the classification systems of these
fractures using plain radiographs and three-dimensional (3D) CT
reconstructions. Clinical and imaging data for 187 adult patients
(139 men and 48 women, mean age 43 years (15 to 101)) with a severe
pelvic ring fracture managed at two Level 1 trauma centres between July
2007 and June 2010 were extracted. Three experienced orthopaedic
surgeons classified the plain radiographs and 3D CT reconstruction
images of 100 patients using the Tile/AO and Young–Burgess systems.
Reliability was compared using kappa statistics. A total of
115 patients (62%) had plain radiographs as well as two-dimensional
(2D) CT and
Although CT is considered the benchmark to measure femoral version, 3D biplanar radiography (hipEOS) has recently emerged as a possible alternative with reduced exposure to ionizing radiation and shorter examination time. The aim of our study was to evaluate femoral stem version in postoperative total hip arthroplasty (THA) patients and compare the accuracy of hipEOS to CT. We hypothesize that there will be no significant difference in calculated femoral stem version measurements between the two imaging methods. In this study, 45 patients who underwent THA between February 2016 and February 2020 and had both a postoperative CT and EOS scan were included for evaluation. A fellowship-trained musculoskeletal radiologist and radiological technician measured femoral version for CT and 3D EOS, respectively. Comparison of values for each imaging modality were assessed for statistical significance.Aims
Methods
This randomised study compared outcomes in patients with displaced fractures of the clavicle treated by open reduction and fixation by a reconstruction plate which was placed either superiorly or three-dimensionally. Between 2003 and 2006, 133 consecutive patients with a mean age of 44.2 years (18 to 60) with displaced midshaft fractures of the clavicle were allocated randomly to a three-dimensional (3D) (67 patients) or superior group (66). Outcome measures included the peri-operative outcome index, delayed union, revision surgery and symptoms beyond 16 weeks. CT was used to reconstruct an image of each affected clavicle and Photoshop 7.0 software employed to calculate the percentage of the clavicular cortical area in the sagittal plane. The patients were reviewed clinically and radiographically at four and 12 months after the operation. The superior plate group had a higher rate of delayed union and had more symptomatic patients than the 3D group (p <
0.05). The percentage comparisons of cortical bone area showed that cortical bone in the superior distal segment is thicker than in the inferior segment, it is also thicker in the anterior mid-section than in the posterior (p <
0.05). If fixation of midshaft fractures of the clavicle with a plate is indicated, a
Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article:
The aims of this study were to determine the success of a reconstruction algorithm used in major acetabular bone loss, and to further define the indications for custom-made implants in major acetabular bone loss. We reviewed a consecutive series of Paprosky type III acetabular defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical acetabular component. IIIB defects were planned to receive either a hemispherical acetabular component plus augments, a cup-cage reconstruction, or a custom-made implant. We used national digital health records and registry reports to identify any reoperation or re-revision procedure and Oxford Hip Score (OHS) for patient-reported outcomes. Implant survival was determined via Kaplan-Meier analysis.Aims
Methods
The aim of this study was to investigate whether anterior pelvic plane-pelvic tilt (APP-PT) is associated with distinct hip pathomorphologies. We asked: is there a difference in APP-PT between young symptomatic patients being evaluated for joint preservation surgery and an asymptomatic control group? Does APP-PT vary among distinct acetabular and femoral pathomorphologies? And does APP-PT differ in symptomatic hips based on demographic factors? This was an institutional review board-approved, single-centre, retrospective, case-control, comparative study, which included 388 symptomatic hips in 357 patients who presented to our tertiary centre for joint preservation between January 2011 and December 2015. Their mean age was 26 years (SD 2; 23 to 29) and 50% were female. They were allocated to 12 different morphological subgroups. The study group was compared with a control group of 20 asymptomatic hips in 20 patients. APP-PT was assessed in all patients based on supine anteroposterior pelvic radiographs using validated HipRecon software. Values in the two groups were compared using an independent-samples Aims
Methods
Mechanical impingement of the iliopsoas (IP) tendon accounts for 2% to 6% of persistent postoperative pain after total hip arthroplasty (THA). The most common initiator is anterior acetabular component protrusion, where the anterior margin is not covered by anterior acetabular wall. A CT scan can be used to identify and measure this overhang; however, no threshold exists for determining symptomatic anterior IP impingement due to overhang. A case-control study was conducted in which CT scan measurements were used to define a threshold that differentiates patients with IP impingement from asymptomatic patients after THA. We analyzed the CT scans of 622 patients (758 THAs) between May 2011 and May 2020. From this population, we identified 136 patients with symptoms suggestive of IP impingement. Among them, six were subsequently excluded: three because the diagnosis was refuted intraoperatively, and three because they had another obvious cause of impingement, leaving 130 hips (130 patients) in the study (impingement) group. They were matched to a control group of 138 asymptomatic hips (138 patients) after THA. The anterior acetabular component overhang was measured on an axial CT slice based on anatomical landmarks (orthogonal to the pelvic axis).Aims
Methods
Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach. From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported.Aims
Methods
Internal hemipelvectomy without reconstruction of the pelvis is a viable treatment for pelvic sarcoma; however, the time it takes to return to excellent function is quite variable. Some patients require greater time and rehabilitation than others. To determine if psoas muscle recovery is associated with changes in ambulatory function, we retrospectively evaluated psoas muscle size and limb-length discrepancy (LLD) before and after treatment and their correlation with objective functional outcomes. T1-weighted MR images were evaluated at three intervals for 12 pelvic sarcoma patients following interval hemipelvectomy without reconstruction. Correlations between the measured changes and improvements in Timed Up and Go test (TUG) and gait speed outcomes were assessed both independently and using a stepwise multivariate regression model.Aims
Methods
Despite being one of the most common injuries around the elbow, the optimal treatment of olecranon fractures is far from established and stimulates debate among both general orthopaedic trauma surgeons and upper limb specialists. It is almost universally accepted that stable non-displaced fractures can be safely treated nonoperatively with minimal specialist input. Internal fixation is recommended for the vast majority of displaced fractures, with a range of techniques and implants to choose from. However, there is concern regarding the complication rates, largely related to symptomatic metalwork resulting in high rates of implant removal. As the number of elderly patients sustaining these injuries increases, we are becoming more aware of the issues associated with fixation in osteoporotic bone and the often fragile soft-tissue envelope in this group. Given this, there is evidence to support an increasing role for nonoperative management in this high-risk demographic group, even in those presenting with displaced and/or multifragmentary fracture patterns. This review summarizes the available literature to date, focusing predominantly on the management techniques and available implants for stable fractures of the olecranon. It also offers some insights into the potential avenues for future research, in the hope of addressing some of the pertinent questions that remain unanswered. Cite this article:
The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS). A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review.Aims
Methods
To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.Aims
Methods