Advertisement for orthosearch.org.uk
Results 1 - 20 of 319
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 7 | Pages 927 - 933
1 Jul 2017
Poltaretskyi S Chaoui J Mayya M Hamitouche C Bercik MJ Boileau P Walch G

Aims. Restoring the pre-morbid anatomy of the proximal humerus is a goal of anatomical shoulder arthroplasty, but reliance is placed on the surgeon’s experience and on anatomical estimations. The purpose of this study was to present a novel method, ‘Statistical Shape Modelling’, which accurately predicts the pre-morbid proximal humeral anatomy and calculates the 3D geometric parameters needed to restore normal anatomy in patients with severe degenerative osteoarthritis or a fracture of the proximal humerus. Materials and Methods. From a database of 57 humeral CT scans 3D humeral reconstructions were manually created. The reconstructions were used to construct a statistical shape model (SSM), which was then tested on a second set of 52 scans. For each humerus in the second set, 3D reconstructions of four diaphyseal segments of varying lengths were created. These reconstructions were chosen to mimic severe osteoarthritis, a fracture of the surgical neck of the humerus and a proximal humeral fracture with diaphyseal extension. The SSM was then applied to the diaphyseal segments to see how well it predicted proximal morphology, using the actual proximal humeral morphology for comparison. Results. With the metaphysis included, mimicking osteoarthritis, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 2.9° (± 2.3°), 4.0° (± 3.3°), 1.0 mm (± 0.8 mm), 0.8 mm (± 0.6 mm), 0.7 mm (± 0.5 mm) and 1.0 mm (± 0.7 mm), respectively. With the metaphysis excluded, mimicking a fracture of the surgical neck, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 3.8° (± 2.9°), 3.9° (± 3.4°), 2.4 mm (± 1.9 mm), 1.3 mm (± 0.9 mm), 0.8 mm (± 0.5 mm) and 0.9 mm (± 0.6 mm), respectively. Conclusion. This study reports a novel, computerised method that accurately predicts the pre-morbid proximal humeral anatomy even in challenging situations. This information can be used in the surgical planning and operative reconstruction of patients with severe degenerative osteoarthritis or with a fracture of the proximal humerus. Cite this article: Bone Joint J 2017;99-B:927–33


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1011 - 1016
1 Sep 2022
Acem I van de Sande MAJ

Prediction tools are instruments which are commonly used to estimate the prognosis in oncology and facilitate clinical decision-making in a more personalized manner. Their popularity is shown by the increasing numbers of prediction tools, which have been described in the medical literature. Many of these tools have been shown to be useful in the field of soft-tissue sarcoma of the extremities (eSTS). In this annotation, we aim to provide an overview of the available prediction tools for eSTS, provide an approach for clinicians to evaluate the performance and usefulness of the available tools for their own patients, and discuss their possible applications in the management of patients with an eSTS. Cite this article: Bone Joint J 2022;104-B(9):1011–1016


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 203 - 211
1 Feb 2024
Park JH Won J Kim H Kim Y Kim S Han I

Aims. This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival. Methods. This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival. Results. The SORG model demonstrated the highest discriminatory accuracy with AUC (0.80 (95% confidence interval (CI) 0.76 to 0.85)) at 12 months. In calibration analysis, the PATHfx3.0 and OPTIModel models underestimated survival, while the SPRING13 and IOR models overestimated survival. The SORG model exhibited excellent calibration with intercepts of 0.10 (95% CI -0.13 to 0.33) at 12 months. The SORG model also had lower Brier scores than the null score at three and 12 months, indicating good overall performance. Decision curve analysis showed that all five survival prediction models provided greater net benefit than the default strategy of operating on either all or no patients. Rapid growth cancer and low serum albumin levels were associated with three-, six-, and 12-month survival. Conclusion. State-of-art survival prediction models for BM-E (PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models) are useful clinical tools for orthopaedic surgeons in the decision-making process for the treatment in Asian patients, with SORG models offering the best predictive performance. Rapid growth cancer and serum albumin level are independent, statistically significant factors contributing to survival following surgery of BM-E. Further refinement of survival prediction models will bring about informed and patient-specific treatment of BM-E. Cite this article: Bone Joint J 2024;106-B(2):203–211


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 19 - 27
1 Jan 2024
Tang H Guo S Ma Z Wang S Zhou Y

Aims. The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA). Methods. This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt. Results. The kappa values were 0.927 (95% confidence interval (CI) 0.861 to 0.992) and 0.945 (95% CI 0.903 to 0.988) for the inter- and intraobserver reliabilities, respectively, and the ICCs ranged from 0.919 to 0.997. The overall mean error and MAE for the prediction of the change of pelvic tilt were -0.3° (SD 3.6°) and 2.8° (SD 2.4°), respectively. The overall absolute change of pelvic tilt was 5.0° (SD 4.1°). Pre- and postoperative values and changes in pelvic tilt, SVA, SS, and LL varied significantly among the five types of patient. Conclusion. We found that the proposed algorithm was reliable and valid for predicting the standing pelvic tilt after THA. Cite this article: Bone Joint J 2024;106-B(1):19–27


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1183 - 1193
14 Sep 2020
Anis HK Strnad GJ Klika AK Zajichek A Spindler KP Barsoum WK Higuera CA Piuzzi NS

Aims. The purpose of this study was to develop a personalized outcome prediction tool, to be used with knee arthroplasty patients, that predicts outcomes (lengths of stay (LOS), 90 day readmission, and one-year patient-reported outcome measures (PROMs) on an individual basis and allows for dynamic modifiable risk factors. Methods. Data were prospectively collected on all patients who underwent total or unicompartmental knee arthroplasty at a between July 2015 and June 2018. Cohort 1 (n = 5,958) was utilized to develop models for LOS and 90 day readmission. Cohort 2 (n = 2,391, surgery date 2015 to 2017) was utilized to develop models for one-year improvements in Knee Injury and Osteoarthritis Outcome Score (KOOS) pain score, KOOS function score, and KOOS quality of life (QOL) score. Model accuracies within the imputed data set were assessed through cross-validation with root mean square errors (RMSEs) and mean absolute errors (MAEs) for the LOS and PROMs models, and the index of prediction accuracy (IPA), and area under the curve (AUC) for the readmission models. Model accuracies in new patient data sets were assessed with AUC. Results. Within the imputed datasets, the LOS (RMSE 1.161) and PROMs models (RMSE 15.775, 11.056, 21.680 for KOOS pain, function, and QOL, respectively) demonstrated good accuracy. For all models, the accuracy of predicting outcomes in a new set of patients were consistent with the cross-validation accuracy overall. Upon validation with a new patient dataset, the LOS and readmission models demonstrated high accuracy (71.5% and 65.0%, respectively). Similarly, the one-year PROMs improvement models demonstrated high accuracy in predicting ten-point improvements in KOOS pain (72.1%), function (72.9%), and QOL (70.8%) scores. Conclusion. The data-driven models developed in this study offer scalable predictive tools that can accurately estimate the likelihood of improved pain, function, and quality of life one year after knee arthroplasty as well as LOS and 90 day readmission. Cite this article: Bone Joint J 2020;102-B(9):1183–1193


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 97 - 102
1 Jan 2022
Hijikata Y Kamitani T Nakahara M Kumamoto S Sakai T Itaya T Yamazaki H Ogawa Y Kusumegi A Inoue T Yoshida T Furue N Fukuhara S Yamamoto Y

Aims. To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score. Methods. In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism. Results. Of the 377 patients used for model derivation, 58 (15%) had an acute AVF postoperatively. The following preoperative measures on multivariable analysis were summarized in the five-point AVA score: intravertebral instability (≥ 5 mm), focal kyphosis (≥ 10°), duration of symptoms (≥ 30 days), intravertebral cleft, and previous history of vertebral fracture. Internal validation showed a mean optimism of 0.019 with a corrected AUC of 0.77. A cut-off of ≤ one point was chosen to classify a low risk of AVF, for which only four of 137 patients (3%) had AVF with 92.5% sensitivity and 45.6% specificity. A cut-off of ≥ four points was chosen to classify a high risk of AVF, for which 22 of 38 (58%) had AVF with 41.5% sensitivity and 94.5% specificity. Conclusion. In this study, the AVA score was found to be a simple preoperative method for the identification of patients at low and high risk of postoperative acute AVF. This model could be applied to individual patients and could aid in the decision-making before vertebral augmentation. Cite this article: Bone Joint J 2022;104-B(1):97–102


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 469 - 478
1 Mar 2021
Garland A Bülow E Lenguerrand E Blom A Wilkinson M Sayers A Rolfson O Hailer NP

Aims. To develop and externally validate a parsimonious statistical prediction model of 90-day mortality after elective total hip arthroplasty (THA), and to provide a web calculator for clinical usage. Methods. We included 53,099 patients with cemented THA due to osteoarthritis from the Swedish Hip Arthroplasty Registry for model derivation and internal validation, as well as 125,428 patients from England and Wales recorded in the National Joint Register for England, Wales, Northern Ireland, the Isle of Man, and the States of Guernsey (NJR) for external model validation. A model was developed using a bootstrap ranking procedure with a least absolute shrinkage and selection operator (LASSO) logistic regression model combined with piecewise linear regression. Discriminative ability was evaluated by the area under the receiver operating characteristic curve (AUC). Calibration belt plots were used to assess model calibration. Results. A main effects model combining age, sex, American Society for Anesthesiologists (ASA) class, the presence of cancer, diseases of the central nervous system, kidney disease, and diagnosed obesity had good discrimination, both internally (AUC = 0.78, 95% confidence interval (CI) 0.75 to 0.81) and externally (AUC = 0.75, 95% CI 0.73 to 0.76). This model was superior to traditional models based on the Charlson (AUC = 0.66, 95% CI 0.62 to 0.70) and Elixhauser (AUC = 0.64, 95% CI 0.59 to 0.68) comorbidity indices. The model was well calibrated for predicted probabilities up to 5%. Conclusion. We developed a parsimonious model that may facilitate individualized risk assessment prior to one of the most common surgical interventions. We have published a web calculator to aid clinical decision-making. Cite this article: Bone Joint J 2021;103-B(3):469–478


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1111 - 1117
1 Oct 2024
Makaram NS Becher H Oag E Heinz NR McCann CJ Mackenzie SP Robinson CM

Aims. The risk factors for recurrent instability (RI) following a primary traumatic anterior shoulder dislocation (PTASD) remain unclear. In this study, we aimed to determine the rate of RI in a large cohort of patients managed nonoperatively after PTASD and to develop a clinical prediction model. Methods. A total of 1,293 patients with PTASD managed nonoperatively were identified from a trauma database (mean age 23.3 years (15 to 35); 14.3% female). We assessed the prevalence of RI, and used multivariate regression modelling to evaluate which demographic- and injury-related factors were independently predictive for its occurrence. Results. The overall rate of RI at a mean follow-up of 34.4 months (SD 47.0) was 62.8% (n = 812), with 81.0% (n = 658) experiencing their first recurrence within two years of PTASD. The median time for recurrence was 9.8 months (IQR 3.9 to 19.4). Independent predictors increasing risk of RI included male sex (p < 0.001), younger age at PTASD (p < 0.001), participation in contact sport (p < 0.001), and the presence of a bony Bankart (BB) lesion (p = 0.028). Greater tuberosity fracture (GTF) was protective (p < 0.001). However, the discriminative ability of the resulting predictive model for two-year risk of RI was poor (area under the curve (AUC) 0.672). A subset analysis excluding identifiable radiological predictors of BB and GTF worsened the predictive ability (AUC 0.646). Conclusion. This study clarifies the prevalence and risk factors for RI following PTASD in a large, unselected patient cohort. Although these data permitted the development of a predictive tool for RI, its discriminative ability was poor. Predicting RI remains challenging, and as-yet-undetermined risk factors may be important in determining the risk. Cite this article: Bone Joint J 2024;106-B(10):1111–1117


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1490 - 1496
1 Nov 2013
Ong P Pua Y

Early and accurate prediction of hospital length-of-stay (LOS) in patients undergoing knee replacement is important for economic and operational reasons. Few studies have systematically developed a multivariable model to predict LOS. We performed a retrospective cohort study of 1609 patients aged ≥ 50 years who underwent elective, primary total or unicompartmental knee replacements. Pre-operative candidate predictors included patient demographics, knee function, self-reported measures, surgical factors and discharge plans. In order to develop the model, multivariable regression with bootstrap internal validation was used. The median LOS for the sample was four days (interquartile range 4 to 5). Statistically significant predictors of longer stay included older age, greater number of comorbidities, less knee flexion range of movement, frequent feelings of being down and depressed, greater walking aid support required, total (versus unicompartmental) knee replacement, bilateral surgery, low-volume surgeon, absence of carer at home, and expectation to receive step-down care. For ease of use, these ten variables were used to construct a nomogram-based prediction model which showed adequate predictive accuracy (optimism-corrected R. 2. = 0.32) and calibration. If externally validated, a prediction model using easily and routinely obtained pre-operative measures may be used to predict absolute LOS in patients following knee replacement and help to better manage these patients. . Cite this article: Bone Joint J 2013;95-B:1490–6


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1689 - 1696
1 Dec 2016
Cheung JPY Cheung PWH Samartzis D Cheung KMC Luk KDK

Aims. We report the use of the distal radius and ulna (DRU) classification for the prediction of peak growth (PG) and growth cessation (GC) in 777 patients with idiopathic scoliosis. We compare this classification with other commonly used parameters of maturity. Patients and Methods. The following data were extracted from the patients’ records and radiographs: chronological age, body height (BH), arm span (AS), date of menarche, Risser sign, DRU grade and status of the phalangeal and metacarpal physes. The mean rates of growth were recorded according to each parameter of maturity. PG was defined as the summit of the curve and GC as the plateau in deceleration of growth. The rates of growth at PG and GC were used for analysis using receiver operating characteristic (ROC) curves to determine the strength and cutoff values of the parameters of growth. Results. The most specific grades for PG using the DRU classification were radial grade 6 and ulnar grade 5, and for GC were radial grade 9 and ulnar grade 7. The DRU classification spanned both PG and GC, enabling better prediction of these clinically relevant stages than other methods. The rate of PG (≥ 0.7 cm/month) and GC (≤ 0.15 cm/month) was the same for girls and boys, in BH and AS measurements. Conclusion. This is the first study to note that the DRU classification can predict both PG and GC, providing evidence that it may aid the management of patients with idiopathic scoliosis. Cite this article: Bone Joint J 2016;98-B:1689–96


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1135 - 1142
1 Aug 2012
Derikx LC van Aken JB Janssen D Snyers A van der Linden YM Verdonschot N Tanck E

Previously, we showed that case-specific non-linear finite element (FE) models are better at predicting the load to failure of metastatic femora than experienced clinicians. In this study we improved our FE modelling and increased the number of femora and characteristics of the lesions. We retested the robustness of the FE predictions and assessed why clinicians have difficulty in estimating the load to failure of metastatic femora. A total of 20 femora with and without artificial metastases were mechanically loaded until failure. These experiments were simulated using case-specific FE models. Six clinicians ranked the femora on load to failure and reported their ranking strategies. The experimental load to failure for intact and metastatic femora was well predicted by the FE models (R. 2. = 0.90 and R. 2. = 0.93, respectively). Ranking metastatic femora on load to failure was well performed by the FE models (τ = 0.87), but not by the clinicians (0.11 < τ < 0.42). Both the FE models and the clinicians allowed for the characteristics of the lesions, but only the FE models incorporated the initial bone strength, which is essential for accurately predicting the risk of fracture. Accurate prediction of the risk of fracture should be made possible for clinicians by further developing FE models.


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 62 - 68
1 Jan 2024
Harris E Clement N MacLullich A Farrow L

Aims

Current levels of hip fracture morbidity contribute greatly to the overall burden on health and social care services. Given the anticipated ageing of the population over the coming decade, there is potential for this burden to increase further, although the exact scale of impact has not been identified in contemporary literature. We therefore set out to predict the future incidence of hip fracture and help inform appropriate service provision to maintain an adequate standard of care.

Methods

Historical data from the Scottish Hip Fracture Audit (2017 to 2021) were used to identify monthly incidence rates. Established time series forecasting techniques (Exponential Smoothing and Autoregressive Integrated Moving Average) were then used to predict the annual number of hip fractures from 2022 to 2029, including adjustment for predicted changes in national population demographics. Predicted differences in service-level outcomes (length of stay and discharge destination) were analyzed, including the associated financial cost of any changes.


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 3 - 5
1 Jan 2024
Fontalis A Haddad FS


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1754 - 1758
1 Dec 2021
Farrow L Zhong M Ashcroft GP Anderson L Meek RMD

There is increasing popularity in the use of artificial intelligence and machine-learning techniques to provide diagnostic and prognostic models for various aspects of Trauma & Orthopaedic surgery. However, correct interpretation of these models is difficult for those without specific knowledge of computing or health data science methodology. Lack of current reporting standards leads to the potential for significant heterogeneity in the design and quality of published studies. We provide an overview of machine-learning techniques for the lay individual, including key terminology and best practice reporting guidelines.

Cite this article: Bone Joint J 2021;103-B(12):1754–1758.


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1358 - 1366
2 Aug 2021
Wei C Quan T Wang KY Gu A Fassihi SC Kahlenberg CA Malahias M Liu J Thakkar S Gonzalez Della Valle A Sculco PK

Aims

This study used an artificial neural network (ANN) model to determine the most important pre- and perioperative variables to predict same-day discharge in patients undergoing total knee arthroplasty (TKA).

Methods

Data for this study were collected from the National Surgery Quality Improvement Program (NSQIP) database from the year 2018. Patients who received a primary, elective, unilateral TKA with a diagnosis of primary osteoarthritis were included. Demographic, preoperative, and intraoperative variables were analyzed. The ANN model was compared to a logistic regression model, which is a conventional machine-learning algorithm. Variables collected from 28,742 patients were analyzed based on their contribution to hospital length of stay.


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 271 - 277
1 Feb 2016
Sørensen MS Gerds TA Hindsø K Petersen MM

Aims

The purpose of this study was to develop a prognostic model for predicting survival of patients undergoing surgery owing to metastatic bone disease (MBD) in the appendicular skeleton.

Methods

We included a historical cohort of 130 consecutive patients (mean age 64 years, 30 to 85; 76 females/54 males) who underwent joint arthroplasty surgery (140 procedures) owing to MBD in the appendicular skeleton during the period between January 2003 and December 2008. Primary cancer, pre-operative haemoglobin, fracture versus impending fracture, Karnofsky score, visceral metastases, multiple bony metastases and American Society of Anaesthesiologist’s score were included into a series of logistic regression models. The outcome was the survival status at three, six and 12 months respectively. Results were internally validated based on 1000 cross-validations and reported as time-dependent area under the receiver-operating characteristic curves (AUC) for predictions of outcome.


The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1441 - 1444
1 Oct 2015
Hermanson M Hägglund G Riad J Rodby-Bousquet E Wagner P

Hip displacement, defined in this study as a migration percentage (MP) of more than 40%, is a common, debilitating complication of cerebral palsy (CP). In this prospective study we analysed the risk of developing hip displacement within five years of the first pelvic radiograph.

All children with CP in southern and western Sweden are invited to register in the hip surveillance programme CPUP. Inclusion criteria for the two groups in this study were children from the CPUP database born between 1994 and 2009 with Gross Motor Function Classification System (GMFCS) III to V. Group 1 included children who developed hip displacement, group 2 included children who did not develop hip displacement over a minimum follow-up of five years. A total of 145 children were included with a mean age at their initial pelvic radiograph of 3.5 years (0.6 to 9.7).

The odds ratio for hip displacement was calculated for GMFCS-level, age and initial MP and head-shaft angle. A risk score was constructed with these variables using multiple logistic regression analysis. The predictive ability of the risk score was evaluated using the area under the receiver operating characteristics curve (AUC).

All variables had a significant effect on the risk of a MP > 40%. The discriminatory accuracy of the CPUP hip score is high (AUC = 0.87), indicating a high ability to differentiate between high- and low-risk individuals for hip displacement. The CPUP hip score may be useful in deciding on further follow-up and treatment in children with CP.

Cite this article: Bone Joint J 2015;97-B:1441–4.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 166 - 171
1 Feb 2008
Lundblad H Kreicbergs A Jansson K

We suggest that different mechanisms underlie joint pain at rest and on movement in osteoarthritis and that separate assessment of these two features with a visual analogue scale (VAS) offers better information about the likely effect of a total knee replacement (TKR) on pain. The risk of persistent pain after TKR may relate to the degree of central sensitisation before surgery, which might be assessed by determining the pain threshold to an electrical stimulus created by a special tool, the Pain Matcher. Assessments were performed in 69 patients scheduled for TKR. At 18 months after operation, separate assessment of pain at rest and with movement was again carried out using a VAS in order to enable comparison of pre- and post-operative measurements. A less favourable outcome in terms of pain relief was observed for patients with a high pre-operative VAS score for pain at rest and a low pain threshold, both features which may reflect a central sensitisation mechanism.


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1270 - 1275
1 Sep 2016
Park S Kang S Kim JY

Aims

Our aim was to investigate the predictive factors for the development of a rebound phenomenon after temporary hemiepiphysiodesis in children with genu valgum.

Patients and Methods

We studied 37 limbs with idiopathic genu valgum who were treated with hemiepiphyseal stapling, and with more than six months remaining growth at removal of the staples. All children were followed until skeletal maturity or for more than two years after removal of the staples.


The Bone & Joint Journal
Vol. 101-B, Issue 1 | Pages 104 - 112
1 Jan 2019
Bülow E Cnudde P Rogmark C Rolfson O Nemes S

Aims

Our aim was to examine the Elixhauser and Charlson comorbidity indices, based on administrative data available before surgery, and to establish their predictive value for mortality for patients who underwent hip arthroplasty in the management of a femoral neck fracture.

Patients and Methods

We analyzed data from 42 354 patients from the Swedish Hip Arthroplasty Register between 2005 and 2012. Only the first operated hip was included for patients with bilateral arthroplasty. We obtained comorbidity data by linkage from the Swedish National Patient Register, as well as death dates from the national population register. We used univariable Cox regression models to predict mortality based on the comorbidity indices, as well as multivariable regression with age and gender. Predictive power was evaluated by a concordance index, ranging from 0.5 to 1 (with the higher value being the better predictive power). A concordance index less than 0.7 was considered poor. We used bootstrapping for internal validation of the results.