The intra-articular administration of tranexamic acid (TXA) has
been shown to be effective in reducing blood loss in unicompartmental
knee arthroplasty and anterior cruciate reconstruction. The effects
on human articular cartilage, however, remains unknown. Our aim,
in this study, was to investigate any detrimental effect of TXA
on chondrocytes, and to establish if there was a safe dose for its
use in clinical practice. The hypothesis was that TXA would cause
a dose-dependent damage to human articular cartilage. The cellular morphology, adhesion, metabolic activity, and viability
of human chondrocytes when increasing the concentration (0 mg/ml
to 40 mg/ml) and length of exposure to TXA (0 to 12 hours) were
analyzed in a 2D model. This was then repeated, excluding cellular
adhesion, in a 3D model and confirmed in viable samples of articular cartilage.Aims
Materials and Methods
We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to
determine whether irrigation during drilling can reduce the chance of nerve root injury. Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live
rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control)
irrigation. We measured temperatures surrounding the nerve root and made histological
evaluations.Aims
Materials and Methods
Rebound growth after hemiepiphysiodesis may be
a normal event, but little is known about its causes, incidence
or factors related to its intensity. The aim of this study was to
evaluate rebound growth under controlled experimental conditions. A total of 22 six-week-old rabbits underwent a medial proximal
tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal
growth plate arrest was maintained for three weeks, and animals
were killed at intervals ranging between three days and three weeks
after removal of the device. The radiological angulation of the proximal
tibia was studied at weekly intervals during and after hemiepiphysiodesis.
A histological study of the retrieved proximal physis of the tibia
was performed. The mean angulation achieved at three weeks was 34.7° (standard
deviation ( In our rabbit model, rebound was an event of variable incidence
and intensity and, when present, did not appear immediately after
restoration of growth, but took some time to appear. Cite this article:
High-intensity narrow-spectrum (HINS) light is
a novel violet-blue light inactivation technology which kills bacteria through
a photodynamic process, and has been shown to have bactericidal
activity against a wide range of species. Specimens from patients
with infected hip and knee arthroplasties were collected over a
one-year period (1 May 2009 to 30 April 2010). A range of these
microbial isolates were tested for sensitivity to HINS-light. During
testing, suspensions of the pathogens were exposed to increasing
doses of HINS-light (of 123mW/cm2 irradiance). Non-light exposed
control samples were also used. The samples were then plated onto
agar plates and incubated at 37°C for 24 hours before enumeration.
Complete inactivation (greater than 4-log10 reduction)
was achieved for all of the isolates. The typical inactivation curve
showed a slow initial reaction followed by a rapid period of inactivation.
The doses of HINS-light required ranged between 118 and 2214 J/cm2.
Gram-positive bacteria were generally found to be more susceptible
than Gram-negative. As HINS-light uses visible wavelengths, it can be safely used
in the presence of patients and staff. This unique feature could
lead to its possible use in the prevention of infection during surgery
and post-operative dressing changes. Cite this article:
Reported rates of dislocation in hip hemiarthroplasty
(HA) for the treatment of intra-capsular fractures of the hip, range
between 1% and 10%. HA is frequently performed through a direct
lateral surgical approach. The aim of this study is to determine
the contribution of the anterior capsule to the stability of a cemented
HA through a direct lateral approach. A total of five whole-body cadavers were thawed at room temperature,
providing ten hip joints for investigation. A Thompson HA was cemented
in place via a direct lateral approach. The cadavers were then positioned
supine, both knee joints were disarticulated and a digital torque
wrench was attached to the femur using a circular frame with three
half pins. The wrench applied an external rotation force with the
hip in extension to allow the hip to dislocate anteriorly. Each
hip was dislocated twice; once with a capsular repair and once without
repairing the capsule. Stratified sampling ensured the order in
which this was performed was alternated for the paired hips on each
cadaver. Comparing peak torque force in hips with the capsule repaired
and peak torque force in hips without repair of the capsule, revealed
a significant difference between the ‘capsule repaired’ (mean 22.96
Nm, standard deviation ( Cite this article:
Trauma and orthopaedics is the largest of the
surgical specialties and yet attracts a disproportionately small
fraction of available national and international funding for health
research. With the burden of musculoskeletal disease increasing,
high-quality research is required to improve the evidence base for
orthopaedic practice. Using the current research landscape in the
United Kingdom as an example, but also addressing the international
perspective, we highlight the issues surrounding poor levels of
research funding in trauma and orthopaedics and indicate avenues
for improving the impact and success of surgical musculoskeletal
research. Cite this article:
Malpositioning of the trochanteric entry point
during the introduction of an intramedullary nail may cause iatrogenic
fracture or malreduction. Although the optimal point of insertion
in the coronal plane has been well described, positioning in the
sagittal plane is poorly defined. The paired femora from 374 cadavers were placed both in the anatomical
position and in internal rotation to neutralise femoral anteversion.
A marker was placed at the apparent apex of the greater trochanter,
and the lateral and anterior offsets from the axis of the femoral
shaft were measured on anteroposterior and lateral photographs. Greater
trochanteric morphology and trochanteric overhang were graded. The mean anterior offset of the apex of the trochanter relative
to the axis of the femoral shaft was 5.1 mm ( Placement of the entry position at the apex of the greater trochanter
in the anteroposterior view does not reliably centre an intramedullary
nail in the sagittal plane. Based on our findings, the site of insertion
should be about 5 mm posterior to the apex of the trochanter to
allow for its anterior offset. Cite this article:
Ketamine has been used in combination with a
variety of other agents for intra-articular analgesia, with promising results.
However, although it has been shown to be toxic to various types
of cell, there is no available information on the effects of ketamine
on chondrocytes. We conducted a prospective randomised controlled study to evaluate
the effects of ketamine on cultured chondrocytes isolated from rat
articular cartilage. The cultured cells were treated with 0.125
mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for
6 h, 24 hours and 48 hours, and compared with controls. Changes of
apoptosis were evaluated using fluorescence microscopy with a 490
nm excitation wavelength. Apoptosis and eventual necrosis were seen
at each concentration. The percentage viability of the cells was
inversely proportional to both the duration and dose of treatment
(p = 0.002 and p = 0.009). Doses of 0.5 mM, 1 mM and 2mM were absolutely
toxic. We concluded that in the absence of solid data to support the
efficacy of intra-articular ketamine for the control of pain, and
the toxic effects of ketamine on cultured chondrocytes shown by
this study, intra-articular ketamine, either alone or in combination
with other agents, should not be used to control pain. Cite this article:
The treatment of chronic osteomyelitis often
includes surgical debridement and filling the resultant void with antibiotic-loaded
polymethylmethacrylate cement, bone grafts or bone substitutes.
Recently, the use of bioactive glass to treat bone defects in infections
has been reported in a limited series of patients. However, no direct comparison
between this biomaterial and antibiotic-loaded bone substitute has
been performed. In this retrospective study, we compared the safety and efficacy
of surgical debridement and local application of the bioactive glass
S53P4 in a series of 27 patients affected by chronic osteomyelitis
of the long bones (Group A) with two other series, treated respectively
with an antibiotic-loaded hydroxyapatite and calcium sulphate compound
(Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded
demineralised bone matrix (Group C; n = 22). Systemic antibiotics
were also used in all groups. After comparable periods of follow-up, the control of infection
was similar in the three groups. In particular, 25 out of 27 (92.6%)
patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out
of 22 (86.3%) in Group C showed no infection recurrence at means
of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up,
respectively, while Group A showed a reduced wound complication
rate. Our results show that patients treated with a bioactive glass
without local antibiotics achieved similar eradication of infection
and less drainage than those treated with two different antibiotic-loaded
calcium-based bone substitutes. Cite this article:
We welcome letters to the Editor concerning articles
that have recently been published. Such letters will be subject
to the usual stages of selection and editing; where appropriate the
authors of the original article will be offered the opportunity
to reply.
We analysed the effects of commonly used medications
on human osteoblastic cell activity in vitro, specifically proliferation
and tissue mineralisation. A list of medications was retrieved from
the records of patients aged >
65 years filed in the database of
the largest health maintenance organisation in our country (>
two
million members). Proliferation and mineralisation assays were performed
on the following drugs: rosuvastatin (statin), metformin (antidiabetic),
metoprolol (β-blocker), citalopram (selective serotonin reuptake
inhibitor [SSRI]), and omeprazole (proton pump inhibitor (PPI)).
All tested drugs significantly stimulated DNA synthesis to varying
degrees, with rosuvastatin 5 µg/ml being the most effective among
them (mean 225% ( Cite this article:
We welcome letters to the Editor concerning articles
that have recently been published. Such letters will be subject
to the usual stages of selection and editing; where appropriate the
authors of the original article will be offered the opportunity
to reply.
We have designed a prospective study to evaluate
the usefulness of prolonged incubation of cultures from sonicated
orthopaedic implants. During the study period 124 implants from
113 patients were processed (22 osteosynthetic implants, 46 hip
prostheses, 54 knee prostheses, and two shoulder prostheses). Of
these, 70 patients had clinical infection; 32 had received antibiotics
at least seven days before removal of the implant. A total of 54 patients
had sonicated samples that produced positive cultures (including
four patients without infection). All of them were positive in the
first seven days of incubation. No differences were found regarding
previous antibiotic treatment when analysing colony counts or days
of incubation in the case of a positive result. In our experience, extending
incubation of the samples to 14 days does not add more positive
results for sonicated orthopaedic implants (hip and knee prosthesis
and osteosynthesis implants) compared with a conventional seven-day incubation
period. Cite this article:
We welcome letters to the Editor concerning articles
that have recently been published. Such letters will be subject
to the usual stages of selection and editing; where appropriate the
authors of the original article will be offered the opportunity
to reply.
This study was designed to test the hypothesis
that the sensory innervation of bone might play an important role
in sensing and responding to low-intensity pulsed ultrasound and
explain its effect in promoting fracture healing. In 112 rats a
standardised mid-shaft tibial fracture was created, supported with
an intramedullary needle and divided into four groups of 28. These
either had a sciatic neurectomy or a patellar tendon resection as
control, and received the ultrasound or not as a sham treatment.
Fracture union, callus mineralisation and remodelling were assessed using
plain radiography, peripheral quantitative computed tomography and
histomorphology. Daily ultrasound treatment significantly increased the rate of
union and the volumetric bone mineral density in the fracture callus
in the neurally intact rats (p = 0.025), but this stimulating effect
was absent in the rats with sciatic neurectomy. Histomorphology
demonstrated faster maturation of the callus in the group treated
with ultrasound when compared with the control group. The results
supported the hypothesis that intact innervation plays an important
role in allowing low-intensity pulsed ultrasound to promote fracture
healing.
This review is aimed at clinicians appraising
preclinical trauma studies and researchers investigating compromised bone
healing or novel treatments for fractures. It categorises the clinical
scenarios of poor healing of fractures and attempts to match them
with the appropriate animal models in the literature. We performed an extensive literature search of animal models
of long bone fracture repair/nonunion and grouped the resulting
studies according to the clinical scenario they were attempting
to reflect; we then scrutinised them for their reliability and accuracy
in reproducing that clinical scenario. Models for normal fracture repair (primary and secondary), delayed
union, nonunion (atrophic and hypertrophic), segmental defects and
fractures at risk of impaired healing were identified. Their accuracy
in reflecting the clinical scenario ranged greatly and the reliability
of reproducing the scenario ranged from 100% to 40%. It is vital to know the limitations and success of each model
when considering its application.
For the treatment of ununited fractures, we developed
a system of delivering magnetic labelled mesenchymal stromal cells
(MSCs) using an extracorporeal magnetic device. In this study, we
transplanted ferucarbotran-labelled and luciferase-positive bone
marrow-derived MSCs into a non-healing femoral fracture rat model
in the presence of a magnetic field. The biological fate of the
transplanted MSCs was observed using luciferase-based bioluminescence
imaging and we found that the number of MSC derived photons increased
from day one to day three and thereafter decreased over time. The
magnetic cell delivery system induced the accumulation of photons at
the fracture site, while also retaining higher photon intensity
from day three to week four. Furthermore, radiological and histological
findings suggested improved callus formation and endochondral ossification.
We therefore believe that this delivery system may be a promising
option for bone regeneration.
Peri-tendinous injection of local anaesthetic,
both alone and in combination with corticosteroids, is commonly performed
in the treatment of tendinopathies. Previous studies have shown
that local anaesthetics and corticosteroids are chondrotoxic, but
their effect on tenocytes remains unknown. We compared the effects
of lidocaine and ropivacaine, alone or combined with dexamethasone,
on the viability of cultured bovine tenocytes. Tenocytes were exposed
to ten different conditions: 1) normal saline; 2) 1% lidocaine;
3) 2% lidocaine; 4) 0.2% ropivacaine; 5) 0.5% ropivacaine; 6) dexamethasone
(dex); 7) 1% lidocaine+dex; 8) 2% lidocaine+dex; 9) 0.2% ropivacaine+dex;
and 10) 0.5% ropivacaine+dex, for 30 minutes. After a 24-hour recovery
period, the viability of the tenocytes was quantified using the
CellTiter-Glo viability assay and fluorescence-activated cell sorting
(FACS) for live/dead cell counts. A 30-minute exposure to lidocaine
alone was significantly toxic to the tenocytes in a dose-dependent
manner, but a 30-minute exposure to ropivacaine or dexamethasone
alone was not significantly toxic. Dexamethasone potentiated ropivacaine tenocyte toxicity at higher
doses of ropivacaine, but did not potentiate lidocaine tenocyte
toxicity. As seen in other cell types, lidocaine has a dose-dependent
toxicity to tenocytes but ropivacaine is not significantly toxic.
Although dexamethasone alone is not toxic, its combination with
0.5% ropivacaine significantly increased its toxicity to tenocytes.
These findings might be relevant to clinical practice and warrant
further investigation.
When transferring tissue regenerative strategies
involving skeletal stem cells to human application, consideration needs
to be given to factors that may affect the function of the cells
that are transferred. Local anaesthetics are frequently used during
surgical procedures, either administered directly into the operative
site or infiltrated subcutaneously around the wound. The aim of
this study was to investigate the effects of commonly used local anaesthetics
on the morphology, function and survival of human adult skeletal
stem cells. Cells from three patients who were undergoing elective hip replacement
were harvested and incubated for two hours with 1% lidocaine, 0.5%
levobupivacaine or 0.5% bupivacaine hydrochloride solutions. Viability
was quantified using WST-1 and DNA assays. Viability and morphology
were further characterised using CellTracker Green/Ethidium Homodimer-1
immunocytochemistry and function was assessed by an alkaline phosphatase
assay. An additional group was cultured for a further seven days
to allow potential recovery of the cells after removal of the local
anaesthetic. A statistically significant and dose dependent reduction in cell
viability and number was observed in the cell cultures exposed to
all three local anaesthetics at concentrations of 25% and 50%, and
this was maintained even following culture for a further seven days. This study indicates that certain local anaesthetic agents in
widespread clinical use are deleterious to skeletal progenitor cells
when studied
The success of long-term transcutaneous implants
depends on dermal attachment to prevent downgrowth of the epithelium
and infection. Hydroxyapatite (HA) coatings and fibronectin (Fn)
have independently been shown to regulate fibroblast activity and
improve attachment. In an attempt to enhance this phenomenon we
adsorbed Fn onto HA-coated substrates. Our study was designed to
test the hypothesis that adsorption of Fn onto HA produces a surface
that will increase the attachment of dermal fibroblasts better than
HA alone or titanium alloy controls. Iodinated Fn was used to investigate the durability of the protein
coating and a bioassay using human dermal fibroblasts was performed
to assess the effects of the coating on cell attachment. Cell attachment
data were compared with those for HA alone and titanium alloy controls
at one, four and 24 hours. Protein attachment peaked within one
hour of incubation and the maximum binding efficiency was achieved
with an initial droplet of 1000 ng. We showed that after 24 hours
one-fifth of the initial Fn coating remained on the substrates,
and this resulted in a significant, three-, four-, and sevenfold
increase in dermal fibroblast attachment strength compared to uncoated controls
at one, four and 24 hours, respectively.
Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone. We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment.
The aim of this study was to evaluate the cultivation potential of cartilage taken from the debrided edge of a chronic lesion of the articular surface. A total of 14 patients underwent arthroscopy of the knee for a chronic lesion on the femoral condyles or trochlea. In addition to the routine cartilage biopsy, a second biopsy of cartilage was taken from the edge of the lesion. The cells isolated from both sources underwent parallel cultivation as monolayer and three-dimensional (3D) alginate culture. The cell yield, viability, capacity for proliferation, morphology and the expressions of typical cartilage genes (collagen I, COL1; collagen II, COL2; aggrecan, AGR; and versican, VER) were assessed. The cartilage differentiation indices (COL2/COL1, AGR/VER) were calculated. The control biopsies revealed a higher mean cell yield (1346 cells/mg Our results suggest that the cultivation of chondrocytes solely from the edges of the lesion cannot be recommended for use in autologous chondrocyte implantation.
The aim of this study was to determine whether exposure of human articular cartilage to hyperosmotic saline (0.9%, 600 mOsm) reduces Using confocal laser scanning microscopy, we identified a sixfold (p = 0.04) decrease in chondrocyte death following mechanical injury in the superficial zone of human articular cartilage exposed to hyperosmotic saline compared with normal saline. These data suggest that increasing the osmolarity of joint irrigation solutions used during open and arthroscopic articular surgery may reduce chondrocyte death from surgical injury and could promote integrative cartilage repair.
Impaction allograft is an established method of securing initial stability of an implant in arthroplasty. Subsequent bone integration can be prolonged, and the volume of allograft may not be maintained. Intermittent administration of parathyroid hormone has an anabolic effect on bone and may therefore improve integration of an implant. Using a canine implant model we tested the hypothesis that administration of parathyroid hormone may improve osseointegration of implants surrounded by bone graft. In 20 dogs a cylindrical porous-coated titanium alloy implant was inserted into normal cancellous bone in the proximal humerus and surrounded by a circumferential gap of 2.5 mm. Morsellised allograft was impacted around the implant. Half of the animals were given daily injections of human parathyroid hormone (1–34) 5 μg/kg for four weeks and half received control injections. The two groups were compared by mechanical testing and histomorphometry. We observed a significant increase in new bone formation within the bone graft in the parathyroid hormone group. There were no significant differences in the volume of allograft, bone-implant contact or in the mechanical parameters. These findings suggest that parathyroid hormone improves new bone formation in impacted morsellised allograft around an implant and retains the graft volume without significant resorption. Fixation of the implant was neither improved nor compromised at the final follow-up of four weeks.
Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination. Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy.
Aspiration arthrography using an iodinated contrast medium is a useful tool for the investigation of septic or aseptic loosening of arthroplasties and of septic arthritis. Previously, the contrast media have been thought to cause false negative results in cultures when present in aspirated samples of synovial fluid, probably because free iodine is bactericidal, but reports have been inconclusive. We examined the influence of the older, high osmolar contrast agents and the low osmolar media used currently on the growth of ten different micro-organisms capable of causing deep infection around a prosthesis. Five media were tested, using a disc diffusion technique and a time-killing curve method in which high and low inocula of micro-organisms were incubated in undiluted media. The only bactericidal effects were found with low inocula of The low and iso-osmolar iodinated contrast media used currently do not impede culture. Future study must assess other causes of false negative cultures of synovial fluid and new developments in enhancing microbial recovery from aspirated samples.
In order to evaluate the relationship between acetabular and proximal femoral alignment in the initiation and evolution of osteoarthritis of the dysplastic hip, the acetabular and femoral angles were calculated geometrically from radiographs of 62 patients with pre-arthrosis and early osteoarthritis. The sum of the lateral opening angle of the acetabulum and the neck-shaft angle was defined as the lateral instability index (LII), and the sum of the anterior opening angle of the acetabulum and the anteversion angle of the femoral neck as the anterior instability index (AII). These two indices were compared in dysplastic and unaffected hips. A total of 22 unilateral hips with pre-arthrosis were followed for at least 15 years to determine whether the two indices were associated with the progression of osteoarthritis. The LII of the affected hips (197.4 (
The patellofemoral joint is an important source of symptoms in osteoarthritis of the knee. We have used a newly designed surgical model of patellar strengthening to induce osteoarthritis in BALB/c mice and to establish markers by investigating the relationship between osteoarthritis and synovial levels of matrix metalloproteinases (MMPs). Osteoarthritis was induced by using this microsurgical technique under direct vision without involving the cavity of the knee. Degeneration of cartilage was assessed by the Mankin score and synovial tissue was used to determine the mRNA expression levels of MMPs. Irrigation fluid from the knee was used to measure the concentrations of MMP-3 and MMP-9. Analysis of cartilage degeneration was correlated with the levels of expression of MMP. After operation the patellofemoral joint showed evidence of mild osteoarthritis at eight weeks and further degenerative changes by 12 weeks. The level of synovial MMP-9 mRNA correlated with the Mankin score at eight weeks, but not at 12 weeks. The levels of MMP-2, MMP-3 and MMP-14 mRNA correlated with the Mankin score at 12 weeks. An increase in MMP-3 was observed from four weeks up to 16 weeks. MMP-9 was notably increased at eight weeks, but the concentration at 16 weeks had decreased to the level observed at four weeks. Our observations suggest that MMP-2, MMP-3 and MMP-14 could be used as markers of the progression of osteoarthritic change.
The purposes of this study were to define the range of laxity of the interosseous ligaments in cadaveric wrists and to determine whether this correlated with age, the morphology of the lunate, the scapholunate (SL) gap or the SL angle. We evaluated 83 fresh-frozen cadaveric wrists and recorded the SL gap and SL angle. Standard arthroscopy of the wrist was then performed and the grades of laxity of the scapholunate interosseous ligament (SLIL) and the lunotriquetral interosseous ligament (LTIL) and the morphology of the lunate were recorded. Arthroscopic evaluation of the SLIL revealed four (5%) grade I specimens, 28 (34%) grade II, 40 (48%) grade III and 11 (13%) grade IV. Evaluation of the LTIL showed 17 (20%) grade I specimens, 40 (48%) grade II, 28 (30%) grade III and one (1%) grade IV. On both bivariate and multivariate analysis, the grade of both the SLIL and LTIL increased with age, but decreased with female gender. The grades of SLIL or LTIL did not correlate with the morphology of the lunate, the SL gap or the SL angle. The physiological range of laxity at the SL and lunotriquetral joints is wider than originally described. The intercarpal ligaments demonstrate an age-related progression of laxity of the SL and lunotriquetral joints. There is no correlation between the grades of laxity of the SLIL or LTIL and the morphology of the lunate, the SL gap or the SL grade. Based on our results, we believe that the Geissler classification has a role in describing intercarpal laxity, but if used alone it cannot adequately diagnose pathological instability. We suggest a modified classification with a mechanism that may distinguish physiological laxity from pathological instability.
We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived mesenchymal stromal cells labelled with ferumoxide. The contribution of an external magnetic targeting system to attract these cells into the ceramic and their effect on subsequent bone formation were evaluated. This technique significantly facilitated the infiltration of ferumoxide-labelled cells into ceramic and significantly contributed to the enhancement of bone formation even in the chronic phase. As such, it is potentially of clinical use to treat fractures, bone defects, delayed union and nonunion.
Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases.
We investigated the antibiotic concentration in fresh-frozen femoral head allografts harvested from two groups of living donors. Ten samples were collected from patients with osteoarthritis of the hip and ten from those with a fracture of the neck of the femur scheduled for primary arthroplasty. Cefazolin (1 g) was administered as a pre-operative prophylactic antibiotic. After storage at −80°C for two weeks the pattern of release of cefazolin from morsellised femoral heads was evaluated by an We concluded that allografts of morsellised bone from the femoral head harvested from patients undergoing arthroplasty of the hip contained cefazolin, which had been administered pre-operatively and they exhibited inhibitory effects against bacteria
The biomechanics of the patellofemoral joint can become disturbed during total knee replacement by alterations induced by the position and shape of the different prosthetic components. The role of the patella and femoral trochlea has been well studied. We have examined the effect of anterior or posterior positioning of the tibial component on the mechanisms of patellofemoral contact in total knee replacement. The hypothesis was that placing the tibial component more posteriorly would reduce patellofemoral contact stress while providing a more efficient lever arm during extension of the knee. We studied five different positions of the tibial component using a six degrees of freedom dynamic knee simulator system based on the Oxford rig, while simulating an active knee squat under physiological loading conditions. The patellofemoral contact force decreased at a mean of 2.2% for every millimetre of posterior translation of the tibial component. Anterior positions of the tibial component were associated with elevation of the patellofemoral joint pressure, which was particularly marked in flexion >
90°. From our results we believe that more posterior positioning of the tibial component in total knee replacement would be beneficial to the patellofemoral joint.
Various chemicals are commonly used as adjuvant treatment to surgery for giant-cell tumour (GCT) of bone. The comparative effect of these solutions on the cells of GCT is not known. In this study we evaluated the cytotoxic effect of sterile water, 95% ethanol, 5% phenol, 3% hydrogen peroxide (H2O2) and 50% zinc chloride (ZnCI2) on GCT monolayer tumour cultures which were established from six patients. The DNA content, the metabolic activity and the viability of the cultured samples of tumour cells were assessed at various times up to 120 hours after their exposure to these solutions. Equal cytotoxicity to the GCT monolayer culture was observed for 95% ethanol, 5% phenol, 3% H2O2 and 50% ZnCI2. The treated samples showed significant reductions in DNA content and metabolic activity 24 hours after treatment and this was sustained for up to 120 hours. The samples treated with sterile water showed an initial decline in DNA content and viability 24 hours after treatment, but the surviving cells were viable and had proliferated. No multinucleated cell formation was seen in these cultures. These results suggest that the use of chemical adjuvants other than water could help improve local control in the treatment of GCT of bone.
We evaluated two reconstruction techniques for a simulated posterolateral corner injury on ten pairs of cadaver knees. Specimens were mounted at 30° and 90° of knee flexion to record external rotation and varus movement. Instability was created by transversely sectioning the lateral collateral ligament at its midpoint and the popliteus tendon was released at the lateral femoral condyle. The left knee was randomly assigned for reconstruction using either a combined or fibula-based treatment with the right knee receiving the other. After sectioning, laxity increased in all the specimens. Each technique restored external rotatory and varus stability at both flexion angles to levels similar to the intact condition. For the fibula-based reconstruction method, varus laxity at 30° of knee flexion did not differ from the intact state, but was significantly less than after the combined method. Both the fibula-based and combined posterolateral reconstruction techniques are equally effective in restoring stability following the simulated injury.
We dissected 20 cadaver hips in order to investigate the anatomy and excursion of the trochanteric muscles in relation to the posterior approach for total hip replacement. String models of each muscle were created and their excursion measured while the femur was moved between its anatomical position and the dislocated position. The position of the hip was determined by computer navigation. In contrast to previous studies which showed a separate insertion of piriformis and obturator internus, our findings indicated that piriformis inserted onto the superior and anterior margins of the greater trochanter through a conjoint tendon with obturator internus, and had connections to gluteus medius posteriorly. Division of these connections allowed lateral mobilisation of gluteus medius with minimal retraction. Analysis of the excursion of these muscles revealed that positioning the thigh for preparation of the femur through this approach elongated piriformis to a maximum of 182%, obturator internus to 185% and obturator externus to 220% of their resting lengths, which are above the thresholds for rupture of these muscles. Our findings suggested that gluteus medius may be protected from overstretching by release of its connection with the conjoint tendon. In addition, failure to detach piriformis or the obturators during a posterior approach for total hip replacement could potentially produce damage to these muscles because of over-stretching, obturator externus being the most vulnerable.
We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal femur. Both implants caused stress shielding around the calcar. Distally, the titanium implant showed stress shielding, whereas the CFRP prosthesis did not produce a strain pattern which was statistically different from the controls. There was a reduction in strain beyond the tip of both the implants. This investigation indicates that use of the CFRP stem should avoid stress shielding in total hip replacement.
We split 100 porcine flexor tendons into five groups of 20 tendons for repair. Three groups were repaired using the Pennington modified Kessler technique, the cruciate or the Savage technique, one using one new device per tendon and the other with two new devices per tendon. Half of the tendons received supplemental circumferential Silfverskiöld type B cross-stitch. The repairs were loaded to failure and a record made of their bulk, the force required to produce a 3 mm gap, the maximum force applied before failure and the stiffness. When only one device was used repairs were equivalent to the Pennington modified Kessler for all parameters except the force to produce a 3 mm gap when supplemented with a circumferential repair, which was equivalent to the cruciate. When two devices were used the repair strength was equivalent to the cruciate repair, and when the two-device repair was supplemented with a circumferential suture the force to produce a 3 mm gap was equivalent to that of the Savage six-strand technique.
We carried out lacerations of 50%, followed by trimming, in ten turkey flexor tendons We concluded that trimming partially lacerated flexor tendons will reduce the gliding resistance at the tendon-pulley interface, but will lead to fragmentation and triggering of the tendon at higher degrees of flexion and loading. We recommend that higher degrees of flexion be avoided during early post-operative rehabilitation following trimming of a flexor tendon.
We have previously shown that joint distraction and movement with a hinged external fixation device for 12 weeks was useful for repairing a large articular cartilage defect in a rabbit model. We have now investigated the results after six months and one year. The device was applied to 16 rabbits who underwent resection of the articular cartilage and subchondral bone from the entire tibial plateau. In group A (nine rabbits) the device was applied for six months. In group B (seven rabbits) it was in place for six months, after which it was removed and the animals were allowed to move freely for an additional six months. The cartilage remained sound in all rabbits. The areas of type II collagen-positive staining and repaired soft tissue were larger in group B than in group A. These findings provide evidence of long-term persistence of repaired cartilage with this technique and that weight-bearing has a positive effect on the quality of the cartilage.
Anatomical atlases document safe corridors for placement of wires when using fine-wire circular external fixation. The furthest posterolateral corridor described in the distal tibia is through the fibula. This limits the crossing angle and stability of the frame. In this paper we describe a new, safe Retro-Fibular Wire corridor, which provides greater crossing angles and increased stability. In a cadaver study, 20 formalin-treated legs were divided into two groups. Wires were inserted into the distal quarter of the tibia using two possible corridors and standard techniques of dissection identified the distance of the wires from neurovascular structures. In both groups the posterior tibial neurovascular bundle was avoided. In group A the peroneal artery was at risk. In group B this injury was avoided. Comparison of the groups showed a significant difference (p <
0.001). We recommend the Retro-Fibular wire technique whereby wires are inserted into the tibia mid-way between the posteromedial border of the fibula and the tendo Achillis, at 30° to 45° to the sagittal plane, and introduced from a posterolateral to an anteromedial position. Subsequently, when using this technique in 30 patients, we have had no neurovascular complications or problems relating to tethering of the peroneal tendons.
We investigated the effect of mitomycin-C on the reduction of the formation of peritendinous fibrous adhesions after tendon repair. In 20 Wistar albino rats the tendo Achillis was cut and repaired using a modified Kessler technique. The rats were divided into two equal groups. In group 1, an injection of mitomycin-C was placed between the tendon and skin of the right leg. In group 2, an identical volume of sterile normal saline was injected on the left side in a similar fashion. All the rats received mitomycin-C or saline for four weeks starting from the day of operation. The animals were killed after 30 days. The formation of peritendinous fibrous tissue, the inflammatory reaction and tendon healing were evaluated. The tensile strength of the repaired tendons was measured biomechanically. Microscopic evidence of the formation of adhesions and inflammation was less in group 1. There was no significant difference in the tensile load required to rupture the repaired tendons in the two groups. Mitomycin-C may therefore provide a simple and inexpensive means of preventing of post-operative adhesions.
The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods. In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days. Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response.
Hip simulators have been used for ten years to determine the tribological performance of large-head metal-on-metal devices using traditional test conditions. However, the hip simulator protocols were originally developed to test metal-on-polyethylene devices. We have used patient activity data to develop a more physiologically relevant test protocol for metal-on-metal devices. This includes stop/start motion, a more appropriate walking frequency, and alternating kinetic and kinematic profiles. There has been considerable discussion about the effect of heat treatments on the wear of metal-on-metal cobalt chromium molybdenum (CoCrMo) devices. Clinical studies have shown a higher rate of wear, levels of metal ions and rates of failure for the heat-treated metal compared to the as-cast metal CoCrMo devices. However, hip simulator studies in vitro under traditional testing conditions have thus far not been able to demonstrate a difference between the wear performance of these implants. Using a physiologically relevant test protocol, we have shown that heat treatment of metal-on-metal CoCrMo devices adversely affects their wear performance and generates significantly higher wear rates and levels of metal ions than in as-cast metal implants.
Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.
Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model.
The aim of this study was to establish a classification system for the acromioclavicular joint using cadaveric dissection and radiological analyses of both reformatted computed tomographic scans and conventional radiographs centred on the joint. This classification should be useful for planning arthroscopic procedures or introducing a needle and in prospective studies of biomechanical stresses across the joint which may be associated with the development of joint pathology. We have demonstrated three main three-dimensional morphological groups namely flat, oblique and curved, on both cadaveric examination and radiological assessment. These groups were recognised in both the coronal and axial planes and were independent of age.
We undertook a study of the anti-tumour effects of hyperthermia, delivered via magnetite cationic liposomes (MCLs), on local tumours and lung metastases in a mouse model of osteosarcoma. MCLs were injected into subcutaneous osteosarcomas (LM8) and subjected to an alternating magnetic field which induced a heating effect in MCLs. A control group of mice with tumours received MCLs but were not exposed to an AMF. A further group of mice with tumours were exposed to an AMF but had not been treated with MCLs. The distribution of MCLs and local and lung metastases was evaluated histologically. The weight and volume of local tumours and the number of lung metastases were determined. Expression of heat shock protein 70 was evaluated immunohistologically. Hyperthermia using MCLs effectively heated the targeted tumour to 45°C. The mean weight of the local tumour was significantly suppressed in the hyperthermia group (p = 0.013). The mice subjected to hyperthermia had significantly fewer lung metastases than the control mice (p = 0.005). Heat shock protein 70 was expressed in tumours treated with hyperthermia, but was not found in those tumours not exposed to hyperthermia. The results demonstrate a significant effect of hyperthermia on local tumours and reduces their potential to metastasise to the lung.
The establishment of a suitable animal model of repair of the rotator cuff is difficult since the presence of a true rotator cuff anatomically appears to be restricted almost exclusively to advanced primates. Our observational study describes the healing process after repair of the cuff in a primate model. Lesions were prepared and repaired in eight ‘middle-aged’ baboons. Two each were killed at four, eight, 12 and 15 weeks post-operatively. The bone-tendon repair zones were assessed macroscopically and histologically. Healing of the baboon supraspinatus involved a sequence of stages resulting in the reestablishment of the bone-tendon junction. It was not uniform and occurred more rapidly at the sites of suture fixation than between them. Four weeks after repair the bone-tendon healing was immature. Whereas macroscopically the repair appeared to be healed at eight weeks, the Sharpey fibres holding the repair together did not appear in any considerable number before 12 weeks. By 15 weeks, the bone-tendon junction was almost, but not quite mature. Our results support the use of a post-operative rehabilitation programme in man which protects the surgical repair for at least 12 to 15 weeks in order to allow maturation of tendon-to-bone healing.
We compared the quality of debridement of chondral lesions performed by four arthroscopic (SH, shaver; CU, curette; SHCU, shaver and curette; BP, bipolar electrodes) and one open technique (OPEN, scalpel and curette) which are used prior to autologous chondrocyte implantation (ACI). The The most vertical walls with the least adjacent damage to cartilage were obtained with the OPEN technique. The CU and SHCU methods gave inferior, but still acceptable results whereas the SH technique alone resulted in a crater-like defect and the BP method undermined the cartilage wall. The subchondral bone was severely violated in all the equine samples which might have been peculiar to this model. The predominant depth of the debridement in the adult human samples was at the level of the calcified cartilage. Some minor penetrations of the subchondral end-plate were induced regardless of the instrumentation used. Our study suggests that not all routine arthroscopic instruments are suitable for the preparation of a defect for ACI. We have shown that the preferred debridement technique is either open or arthroscopically-assisted manual curettage. The use of juvenile equine stifles was not appropriate for the study of the cartilage-subchondral bone interface.
In a study on ten fresh human cadavers we examined the change in the height of the intervertebral disc space, the angle of lordosis and the geometry of the facet joints after insertion of intervertebral total disc replacements. SB III Charité prostheses were inserted at L3-4, L4-5, and L5-S1. The changes studied were measured using computer navigation sofware applied to CT scans before and after instrumentation. After disc replacement the mean lumbar disc height was doubled (p <
0.001). The mean angle of lordosis and the facet joint space increased by a statistically significant extent (p <
0.005 and p = 0.006, respectively). By contrast, the mean facet joint overlap was significantly reduced (p <
0.001). Our study indicates that the increase in the intervertebral disc height after disc replacement changes the geometry at the facet joints. This may have clinical relevance.
The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff. We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis). The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears. These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment.
The cortical strains on the femoral neck and proximal femur were measured before and after implantation of a resurfacing femoral component in 13 femurs from human cadavers. These were loaded into a hip simulator for single-leg stance and stair-climbing. After resurfacing, the mean tensile strain increased by 15% (95% confidence interval (CI) 6 to 24, p = 0.003) on the lateral femoral neck and the mean compressive strain increased by 11% (95% CI 5 to 17, p = 0.002) on the medial femoral neck during stimulation of single-leg stance. On the proximal femur the deformation pattern remained similar to that of the unoperated femurs. The small increase of strains in the neck area alone would probably not be sufficient to cause fracture of the neck However, with patient-related and surgical factors these strain changes may contribute to the risk of early periprosthetic fracture.
We investigated the effect of pre-heating a femoral component on the porosity and strength of bone cement, with or without vacuum mixing used for total hip replacement. Cement mantles were moulded in a manner simulating clinical practice for cemented hip replacement. During polymerisation, the temperature was monitored. Specimens of cement extracted from the mantles underwent bending or fatigue tests, and were examined for porosity. Pre-heating the stem alone significantly increased the mean temperature values measured within the mantle (+14.2°C) (p <
0.001) and reduced the mean curing time (−1.5 min) (p <
0.001). The addition of vacuum mixing modulated the mean rise in the temperature of polymerisation to 11°C and reduced the mean duration of the process by one minute and 50 seconds (p = 0.01 and p <
0.001, respectively). In all cases, the maximum temperature values measured in the mould simulating the femur were <
50°C. The mixing technique and pre-heating the stem slightly increased the static mechanical strength of bone cement. However, the fatigue life of the cement was improved by both vacuum mixing and pre-heating the stem, but was most marked (+ 280°C) when these methods were combined. Pre-heating the stem appears to be an effective way of improving the quality of the cement mantle, which might enhance the long-term performance of bone cement, especially when combined with vacuum mixing.
Using an osteotomy of the olecranon as a model of a transverse fracture in 22 cadaver elbows we determined the ability of three different types of suture and stainless steel wire to maintain reduction when using a tension-band technique to stabilise the bone. Physiological cyclical loading simulating passive elbow movement (15 N) and using the arms to push up from a chair (450 N) were applied using an Instron materials testing machine whilst monitoring the osteotomy site with a video extensometer. Each osteotomy was repaired by one of four materials, namely, Stainless Steel Wire (7), No 2 Ethibond (3), No 5 Ethibond (5), or No 2 FiberWire (7). There were no failures (movement of >
2 mm) with stainless steel wire or FiberWire and no significant difference in the movements measured across the site of the osteotomy (p = 0.99). The No. 2 Ethibond failed at 450 N and two of the five of No. 5 Ethibond sutures had a separation of >
2 mm at 450 N. FiberWire as the tension band in this model held the reduction as effectively as stainless steel wire and may reduce the incidence of discomfort from the hardware. On the basis of our findings we suggest that a clinical trial should be undertaken
We have developed an animal model to examine the formation of heterotopic ossification using standardised muscular damage and implantation of a beta-tricalcium phosphate block into a hip capsulotomy wound in Wistar rats. The aim was to investigate how cells originating from drilled femoral canals and damaged muscles influence the formation of heterotopic bone. The femoral canal was either drilled or left untouched and a tricalcium phosphate block, immersed either in saline or a rhBMP-2 solution, was implanted. These implants were removed at three and 21 days after the operation and examined histologically, histomorphometrically and immunohistochemically. Bone formation was seen in all implants in rhBMP-2-immersed, whereas in those immersed in saline the process was minimal, irrespective of drilling of the femoral canals. Bone mineralisation was somewhat greater in the absence of drilling with a mean mineralised volume to mean total volume of 18.2% ( Our findings suggest that osteoinductive signalling is an early event in the formation of ectopic bone. If applicable to man the results indicate that careful tissue handling is more important than the prevention of the dissemination of bone cells in order to avoid heterotopic ossification.
Platelet-leucocyte gel (PLG), a new biotechnological blood product, has hitherto been used primarily to treat chronic ulcers and to promote soft-tissue and bone regeneration in a wide range of medical fields. In this study, the antimicrobial efficacy of PLG against Staphylococcus aureus (ATCC 25923) was investigated in a rabbit model of osteomyelitis. Autologous PLG was injected into the tibial canal after inoculation with Staph. aureus. The prophylactic efficacy of PLG was evaluated by microbiological, radiological and histological examination. Animal groups included a treatment group that received systemic cefazolin and a control group that received no treatment. Treatment with PLG or cefazolin significantly reduced radiological and histological severity scores compared to the control group. This result was confirmed by a significant reduction in the infection rate and the number of viable bacteria. Although not comparable to cefazolin, PLG exhibited antimicrobial efficacy in vivo and therefore represents a novel strategy to prevent bone infection in humans.
In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.
The human acetabulofemoral joint is commonly modelled as a pure ball-and-socket joint, but there has been no quantitative assessment of this assumption in the literature. Our aim was to test the limits and validity of this hypothesis. We performed experiments on four adult cadavers. Cortical pins, each equipped with a marker cluster, were implanted in the pelvis and the femur. Movements were recorded using stereophotogrammetry while an operator rotated the cadaver’s acetabulofemoral joint, exploiting the widest possible range of movement. The functional consistency of the acetabulofemoral joint as a pure spherical joint was assessed by comparing the magnitude of the translations of the hip joint centre as obtained on cadavers, with the centre of rotation of two metal segments linked through a perfectly spherical hinge. The results showed that the radii of the spheres containing 95% of the positions of the estimated centres of rotation were separated by less than 1 mm for both the acetabulofemoral joint and the mechanical spherical hinge. Therefore, the acetabulofemoral joint can be modelled as a spherical joint within the considered range of movement (flexion/extension 20° to 70°; abduction/adduction 0° to 45°; internal/external rotation 0° to 30°).
We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score. All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement.
We hypothesised that meniscal tears treated with mesenchymal stem cells (MSCs) together with a conventional suturing technique would show improved healing compared with those treated by a conventional suturing technique alone. In a controlled laboratory study 28 adult pigs (56 knees) underwent meniscal procedures after the creation of a radial incision to represent a tear. Group 1 (n = 9) had a radial meniscal tear which was left untreated. In group 2 (n = 19) the incision was repaired with sutures and fibrin glue and in group 3, the experimental group (n = 28), treatment was by MSCs, suturing and fibrin glue. At eight weeks, macroscopic examination of group 1 showed no healing in any specimens. In group 2 no healing was found in 12 specimens and incomplete healing in seven. The experimental group 3 had 21 specimens with complete healing, five with incomplete healing and two with no healing. Between the experimental group and each of the control groups this difference was significant (p <
0.001). The histological and macroscopic findings showed that the repair of meniscal tears in the avascular zone was significantly improved with MSCs, but that the mechanical properties of the healed menisci remained reduced.
Injection or aspiration of the ankle may be performed through either an anteromedial or an anterolateral approach for diagnostic or therapeutic reasons. We evaluated the success of an intra-articular puncture in relation to its site in 76 ankles from 38 cadavers. Two orthopaedic surgical trainees each injected methylene blue dye into 18 of 38 ankles through an anterolateral approach and into 20 of 38 through an anteromedial. An arthrotomy was then performed to confirm the placement of the dye within the joint. Of the anteromedial injections 31 of 40 (77.5%, 95% confidence interval (CI) 64.6 to 90.4) were successful as were 31 of 36 (86.1%, 95% CI 74.8 to 97.4) anterolateral injections. In total 62 of 76 (81.6%, 95% CI 72.9 to 90.3) of the injections were intra-articular with a trend towards greater accuracy with the anterolateral approach, but this difference was not statistically significant (p = 0.25). In the case of trainee A, 16 of 20 anteromedial injections and 14 of 18 anterolateral punctures were intra-articular. Trainee B made successful intra-articular punctures in 15 of 20 anteromedial and 17 of 18 anterolateral approaches. There was no significant difference between them (p = 0.5 and p = 0.16 for the anteromedial and anterolateral approaches, respectively). These results were similar to those of other reported studies. Unintended peri-articular injection can cause complications and an unsuccessful aspiration can delay diagnosis. Placement of the needle may be aided by the use of ultrasonographic scanning or fluoroscopy which may be required in certain instances.
We studied the effects of coating titanium implants with teicoplanin and clindamycin in 30 New Zealand White rabbits which were randomly assigned to three groups. The intramedullary canal of the left tibia of each rabbit was inoculated with 500 colony forming units of Staphylococcus aureus. Teicoplanin-coated implants were implanted into rabbits in group 1, clindamycin-coated implants into rabbits in group 2, and uncoated implants into those in group 3. All the rabbits were killed one week later. The implants were removed and cultured together with pieces of tibial bone and wound swabs. The rate of colonisation of the organisms in the three groups was compared. Organisms were cultured from no rabbits in group 1, one in group 2 but from all in group 3. There was no significant difference between groups 1 and 2 (p = 1.000). There were significant differences between groups 1 and 3 and groups 2 and 3 (p <
0.001). Significant protection against bacterial colonisation and infection was found with teicoplanin- and clindamycin-coated implants in this experimental model.
In an osteological collection of 3100 specimens, 70 were found with unilateral clavicular fractures which were matched with 70 randomly selected normal specimens. This formed the basis of a study of the incidence of arthritis of the acromioclavicular joint and the effect of clavicular fracture on the development of arthritis in the ipsilateral acromioclavicular joint. This was graded visually on a severity scale of 0 to 3. The incidence of moderate to severe arthritis of the acromioclavicular joint in normal specimens was 77% (100 specimens). In those with a clavicular fracture, 66 of 70 (94%) had arthritis of the acromioclavicular joint, compared to 63 of 70 (90%) on the non-injured contralateral side (p = 0.35). Clavicles with shortening of 15 mm or less had no difference in the incidence of arthritis compared to those with shortening greater than 15 mm (p = 0.25). The location of the fracture had no effect on the development of arthritis.
Intra-articular punctures and injections are performed routinely on patients with injuries to and chronic diseases of joints, to release an effusion or haemarthrosis, or to inject drugs. The purpose of this study was to investigate the accuracy of placement of the needle during this procedure. A total of 76 cadaver acromioclavicular joints were injected with a solution containing methyl blue and subsequently dissected to distinguish intra- from peri-articular injection. In order to assess the importance of experience in achieving accurate placement, half of the injections were performed by an inexperienced resident and half by a skilled specialist. The specialist injected a further 20 cadaver acromioclavicular joints with the aid of an image intensifier. The overall frequency of peri-articular injection was much higher than expected at 43% (33 of 76) overall, with 42% (16 of 38) by the specialist and 45% (17 of 38) by the resident. The specialist entered the joint in all 20 cases when using the image intensifier. Correct positioning of the needle in the joint should be facilitated by fluoroscopy, thereby guaranteeing an intra-articular injection.
While the evolution of the bony skeleton of the shoulder girdle is well described, there is little information regarding the soft tissues, in particular of the rotator cuff. We dissected the shoulders of 23 different species and compared the anatomical features of the tendons of the rotator cuff. The alignment and orientation of the collagen fibres of some of the tendons were also examined histologically. The behaviour of the relevant species was studied, with particular reference to the extent and frequency of forward-reaching and overhead activity of the forelimb. In quadrupedal species, the tendons of supraspinatus, infraspinatus and teres minor were seen to insert into the greater tuberosity of the humerus separately. They therefore did not form a true rotator cuff with blending of the tendons. This was only found in advanced primates and in one unusual species, the tree kangaroo. These findings support the suggestion that the appearance of the rotator cuff in the evolutionary process parallels anatomical adaptation to regular overhead activity and the increased use of the arm away from the sagittal plane.
Using the transverse processes of fresh porcine lumbar spines as an experimental model we evaluated the heat generated by a rotating burr of a high-speed drill in cutting the bone. The temperature at the drilled site reached 174°C with a diamond burr and 77°C with a steel burr. With water irrigation at a flow rate of 540 ml/hr an effective reduction in the temperature was achieved whereas irrigation with water at 180 ml/hr was much less effective. There was a significant negative correlation between the thickness of the residual bone and the temperature measured at its undersurface adjacent to the drilling site (p <
0.001). Our data suggest that tissues neighbouring the drilled bone, especially nerve roots, can be damaged by the heat generated from the tip of a high-speed drill. Nerve-root palsy, one of the most common complications of cervical spinal surgery, may be caused by thermal damage to nerve roots arising in this manner.
We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.
Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 ( The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma.
We used a goat model of a contaminated musculoskeletal defect to determine the effectiveness of rapidly-resorbing calcium-sulphate pellets containing amikacin to reduce the local bacterial count. Our findings showed that this treatment eradicated the bacteria quickly, performed as well as standard polymethylmethacrylate mixed with an antibiotic and had many advantages over the latter. The pellets were prepared before surgery and absorbed completely. They released all of the antibiotic and did not require a subsequent operation for their removal. Our study indicated that locally administered antibiotics reduced bacteria within the wound rapidly. This method of treatment may have an important role in decreasing the rate of infection in contaminated wounds.
Wear of polyethylene is associated with aseptic loosening of orthopaedic implants and has been observed in hip and knee prostheses and anatomical implants for the shoulder. The reversed shoulder prostheses have not been assessed as yet. We investigated the volumetric polyethylene wear of the reversed and anatomical Aequalis shoulder prostheses using a mathematical musculoskeletal model. Movement and joint stability were achieved by EMG-controlled activation of the muscles. A non-constant wear factor was considered. Simulated activities of daily living were estimated from After one year of use, the volumetric wear was 8.4 mm3 for the anatomical prosthesis, but 44.6 mm3 for the reversed version. For the anatomical prosthesis the predictions for contact pressure and wear were consistent with biomechanical and clinical data. The abrasive wear of the polyethylene in reversed prostheses should not be underestimated, and further analysis, both experimental and clinical, is required.
The medial periosteal hinge plays a key role in fractures of the head of the humerus, offering mechanical support during and after reduction and maintaining perfusion of the head by the vessels in the posteromedial periosteum. We have investigated the biomechanical properties of the medial periosteum in fractures of the proximal humerus using a standard model in 20 fresh-frozen cadaver specimens comparable in age, gender and bone mineral density. After creating the fracture, we displaced the humeral head medial or lateral to the shaft with controlled force until complete disruption of the posteromedial periosteum was recorded. As the quality of periosteum might be affected by age and bone quality, the results were correlated with the age and the local bone mineral density of the specimens measured with quantitative CT. Periosteal rupture started at a mean displacement of 2.96 mm ( The mean bone mineral density was 0.111 g/cm3 ( This study showed that the posteromedial hinge is a mechanical structure capable of providing support for percutaneous reduction and stabilisation of a fracture by ligamentotaxis. Periosteal rupture started at a mean of about 3 mm and was completed by a mean displacement of just under 35 mm. The microvascular situation of the rupturing periosteum cannot be investigated with the current model.
We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged <
65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders. Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8+ lymphopenia) and 11 patients (13%) (CD3+ lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8+ lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets.
There has been only one limited report dating from 1941 using dissection which has described the tibiofemoral joint between 120° and 160° of flexion despite the relevance of this arc to total knee replacement. We now provide a full description having examined one living and eight cadaver knees using MRI, dissection and previously published cryosections in one knee. In the range of flexion from 120° to 160° the flexion facet centre of the medial femoral condyle moves back 5 mm and rises up on to the posterior horn of the medial meniscus. At 160° the posterior horn is compressed in a synovial recess between the femoral cortex and the tibia. This limits flexion. The lateral femoral condyle also rolls back with the posterior horn of the lateral meniscus moving with the condyle. Both move down over the posterior tibia at 160° of flexion. Neither the events between 120° and 160° nor the anatomy at 160° could result from a continuation of the kinematics up to 120°. Therefore hyperflexion is a separate arc. The anatomical and functional features of this arc suggest that it would be difficult to design an implant for total knee replacement giving physiological movement from 0° to 160°.
We evaluated the histological changes before and after fixation in ten knees of ten patients with osteochondritis dissecans who had undergone fixation of the unstable lesions. There were seven males and three females with a mean age of 15 years (11 to 22). The procedure was performed either using bio-absorbable pins only or in combination with an autologous osteochondral plug. A needle biopsy was done at the time of fixation and at the time of a second-look arthroscopy at a mean of 7.8 months (6 to 9) after surgery. The biopsy specimens at the second-look arthroscopy showed significant improvement in the histological grading score compared with the pre-fixation scores (p <
0.01). In the specimens at the second-look arthroscopy, the extracellular matrix was stained more densely than at the time of fixation, especially in the middle to deep layers of the articular cartilage. Our findings show that articular cartilage regenerates after fixation of an unstable lesion in osteochondritis dissecans.
Hydroxyapatite-coated standard anatomical and customised femoral stems are designed to transmit load to the metaphyseal part of the proximal femur in order to avoid stress shielding and to reduce resorption of bone. In a randomised in vitro study, we compared the changes in the pattern of cortical strain after the insertion of hydroxyapatite-coated standard anatomical and customised stems in 12 pairs of human cadaver femora. A hip simulator reproduced the physiological loads on the proximal femur in single-leg stance and stair-climbing. The cortical strains were measured before and after the insertion of the stems. Significantly higher strain shielding was seen in Gruen zones 7, 6, 5, 3 and 2 after the insertion of the anatomical stem compared with the customised stem. For the anatomical stem, the hoop strains on the femur also indicated that the load was transferred to the cortical bone at the lower metaphyseal or upper diaphyseal part of the proximal femur. The customised stem induced a strain pattern more similar to that of the intact femur than the standard, anatomical stem.
Soaking bone grafts in a bisphosphonate solution before implantation can prevent their resorption and increase the local bone density in rats and humans. However, recent studies suggest that pre-treatment of allografts with bisphosphonate can prevent bone ingrowth into impaction grafts. We tested the hypothesis that excessive amounts of bisphosphonate would also cause a negative response in less dense grafts. We used a model where non-impacted metaphyseal bone grafts were randomised into three groups with either no bisphosphonate, alendronate followed by rinsing, and alendronate without subsequent rinsing, and inserted into bone chambers in rats. The specimens were evaluated histologically at one week, and by histomorphometry and radiology at four weeks. At four weeks, both bisphosphonate groups showed an increase in the total bone content, increased newly formed bone, and higher radiodensity than the controls. In spite of being implanted in a chamber with a limited opportunity to diffuse, even an excessive amount of bisphosphonate improved the outcome. We suggest that the negative results seen by others could be due to the combination of densely compacted bone and a bisphosphonate. We suggest that bisphosphonates are likely to have a negative influence where resorption is a prerequisite to create space for new bone ingrowth.
The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°,
The aim of this study was to determine whether subchondral bone influences in situ chondrocyte survival. Bovine explants were cultured in serum-free media over seven days with subchondral bone excised from articular cartilage (group A), subchondral bone left attached to articular cartilage (group B), and subchondral bone excised but co-cultured with articular cartilage (group C). Using confocal laser scanning microscopy, fluorescent probes and biochemical assays, in situ chondrocyte viability and relevant biophysical parameters (cartilage thickness, cell density, culture medium composition) were quantified over time (2.5 hours vs seven days). There was a significant increase in chondrocyte death over seven days, primarily within the superficial zone, for group A, but not for groups B or C (p <
0.05). There was no significant difference in cartilage thickness or cell density between groups A, B and C (p >
0.05). Increases in the protein content of the culture media for groups B and C, but not for group A, suggested that the release of soluble factors from subchondral bone may have influenced chondrocyte survival. In conclusion, subchondral bone significantly influenced chondrocyte survival in articular cartilage during explant culture. The extrapolation of bone-cartilage interactions in vitro to the clinical situation must be made with caution, but the findings from these experiments suggest that future investigation into in vivo mechanisms of articular cartilage survival and degradation must consider the interactions of cartilage with subchondral bone.
An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical environment of the patellar tendon in the presence of normal joint movement via the application of an adjustable external fixator mechanism between the patella and the tibia in sheep, while avoiding exposure of the patellar tendon itself. Stress shielding caused a significant reduction in the structural and material properties of stiffness (79%), ultimate load (69%), energy absorbed (61%), elastic modulus (76%) and ultimate stress (72%) of the tendon compared with controls. Compared with the material properties the structural properties exhibited better recovery after re-stressing with stiffness 97%, ultimate load 92%, energy absorbed 96%, elastic modulus 79% and ultimate stress 80%. The cross-sectional area of the re-stressed tendons was significantly greater than that of stress-shielded tendons. The remodelling phenomena exhibited in this study are consistent with a putative feedback mechanism under strain control. This study provides a basis from which to explore the interactions of tendon remodelling and mechanical environment.
We describe a lateral approach to the distal humerus based on initial location of the superficial branches of the radial nerve, the inferior lateral cutaneous nerve of the arm and the posterior cutaneous nerve of the forearm. In 18 upper limbs the superficial branches of the radial nerve were located in the subcutaneous tissue between the triceps and brachioradialis muscles and dissected proximally to their origin from the radial nerve, exposing the shaft of the humerus. The inferior lateral cutaneous nerve of the arm arose from the radial nerve at the lower part of the spiral groove, at a mean of 14.2 cm proximal to the lateral epicondyle. The posterior cutaneous nerve of the forearm arose from the inferior lateral cutaneous nerve at a mean of 6.9 cm (6.0 to 8.1) proximal to the lateral epicondyle and descended vertically along the dorsal aspect of the forearm. The size and constant site of emergence between the triceps and brachioradialis muscles constitute a readily identifiable landmark to explore the radial nerve and expose the humeral shaft.
The aim of our study was to investigate whether placing of the femoral component of a hip resurfacing in valgus protected against spontaneous fracture of the femoral neck. We performed a hip resurfacing in 20 pairs of embalmed femora. The femoral component was implanted at the natural neck-shaft angle in the left femur and with a 10° valgus angle on the right. The bone mineral density of each femur was measured and CT was performed. Each femur was evaluated in a materials testing machine using increasing cyclical loads. In specimens with good bone quality, the 10° valgus placement of the femoral component had a protective effect against fractures of the femoral neck. An adverse effect was detected in osteoporotic specimens. When resurfacing the hip a valgus position of the femoral component should be achieved in order to prevent fracture of the femoral neck. Patient selection remains absolutely imperative. In borderline cases, measurement of bone mineral density may be indicated.
The role of inflammatory cells and their products in tendinopathy is not completely understood. Pro-inflammatory cytokines are upregulated after oxidative and other forms of stress. Based on observations that increased cytokine expression has been demonstrated in cyclically-loaded tendon cells we hypothesised that because of their role in oxidative stress and apoptosis, pro-inflammatory cytokines may be present in rodent and human models of tendinopathy. A rat supraspinatus tendinopathy model produced by running overuse was investigated at the genetic level by custom micro-arrays. Additionally, samples of torn supraspinatus tendon and matched intact subscapularis tendon were collected from patients undergoing arthroscopic shoulder surgery for rotator-cuff tears and control samples of subscapularis tendon from ten patients with normal rotator cuffs undergoing arthroscopic stabilisation of the shoulder were also obtained. These were all evaluated using semiquantitative reverse transcription polymerase chain-reaction and immunohistochemistry. We identified significant upregulation of pro-inflammatory cytokines and apoptotic genes in the rodent model (p = 0.005). We further confirmed significantly increased levels of cytokine and apoptotic genes in human supraspinatus and subscapularis tendon harvested from patients with rotator cuff tears (p = 0.0008). These findings suggest that pro-inflammatory cytokines may play a role in tendinopathy and may provide a target for preventing tendinopathies.
The gelatin-based haemostyptic compound Spongostan was tested as a three-dimensional (3D) chondrocyte matrix in an in vitro model for autologous chondrocyte transplantation using cells harvested from bovine knees. In a control experiment of monolayer cultures, the proliferation or de-differentiation of bovine chondrocytes was either not or only marginally influenced by the presence of Spongostan (0.3 mg/ml). In monolayers and 3-D Minusheet culture chambers, the cartilage-specific differentiation markers aggrecan and type-II collagen were ubiquitously present in a cell-associated fashion and in the pericellular matrix. The Minusheet cultures usually showed a markedly higher mRNA expression than monolayer cultures irrespective of whether Spongostan had been present or not during culture. Although the de-differentiation marker type-I collagen was also present, the ratio of type-I to type-II collagen or aggrecan to type-I collagen remained higher in Minusheet 3-D cultures than in monolayer cultures irrespective of whether Spongostan had been included in or excluded from the monolayer cultures. The concentration of GAG in Minusheet cultures reached its maximum after 14 days with a mean of 0.83 ± 0.8 μg/106 cells; mean ±, Our results suggest that Spongostan is in principle suitable as a 3-D chondrocyte matrix, as demonstrated in Minusheet chambers, in particular for a culture period of 14 days. Clinically, differentiating effects on chondrocytes, simple handling and optimal formability may render Spongostan an attractive 3-D scaffold for autologous chondrocyte transplantation.
The treatment of bony defects of the tibia at the time of revision total knee replacement is controversial. The place of compacted morsellised bone graft is becoming established, particularly in contained defects. It has previously been shown that the initial stability of impaction-grafted trays in the contained defects is equivalent to that of an uncemented primary knee replacement. However, there is little biomechanical evidence on which to base a decision in the treatment of uncontained defects. We undertook a laboratory-based biomechanical study comparing three methods of graft containment in segmental medial tibial defects and compared them with the use of a modular metal augment to bypass the defect. Using resin models of the proximal tibia with medial defects representing either 46% or 65% of the medial cortical rim, repair of the defect was accomplished using mesh, cement or a novel bag technique, after which impaction bone grafting was used to fill the contained defects and a tibial component was cemented in place. As a control, a cemented tibial component with modular metal augments was used in identical defects. All specimens were submitted to cyclical mechanical loading, during which cyclical and permanent tray displacement were determined. The results showed satisfactory stability with all the techniques except the bone bag method. Using metal augments gave the highest initial stability, but obviously lacked any potential for bone restoration.
Conventional non-steroidal anti-inflammatory drugs (NSAIDs) and newer specific cyclo-oxygenase-2 (cox-2) inhibitors are commonly used in musculoskeletal trauma and orthopaedic surgery to reduce the inflammatory response and pain. These drugs have been reported to impair bone metabolism. In reconstruction of the anterior cruciate ligament the hamstring tendons are mainly used as the graft of choice, and a prerequisite for good results is healing of the tendons in the bone tunnel. Many of these patients are routinely given NSAIDs or cox-2 inhibitors, although no studies have elucidated the effects of these drugs on tendon healing in the bone tunnel. In our study 60 female Wistar rats were randomly allocated into three groups of 20. One received parecoxib, one indometacin and one acted as a control. In all the rats the tendo-Achillis was released proximally from the calf muscles. It was then pulled through a drill hole in the distal tibia and sutured anteriorly. The rats were given parecoxib, indometacin or saline intraperitoneally twice daily for seven days. After 14 days the tendon/bone-tunnel interface was subjected to mechanical testing. Significantly lower maximum pull-out strength (p <
0.001), energy absorption (p <
0.001) and stiffness (p = 0.035) were found in rats given parecoxib and indometacin compared with the control group, most pronounced with parecoxib.
The haematoma occurring at the site of a fracture is known to play an important role in bone healing. We have recently shown the presence of progenitor cells in human fracture haematoma and demonstrated that they have the capacity for multilineage mesenchymal differentiation. There have been many studies which have shown that low-intensity pulsed ultrasound (LIPUS) stimulates the differentiation of a variety of cells, but none has investigated the effects of LIPUS on cells derived from human fracture tissue including human fracture haematoma-derived progenitor cells (HCs). In this
Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur. These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.
In spite of extensive accounts describing the blood supply to the femoral head, the prediction of avascular necrosis is elusive. Current opinion emphasises the contributions of the superior retinacular artery but may not explain the clinical outcome in many situations, including intramedullary nailing of the femur and resurfacing of the hip. We considered that significant additional contribution to the vascularity of the femoral head may exist. A total of 14 fresh-frozen hips were dissected and the medial circumflex femoral artery was cannulated in the femoral triangle. On the test side, this vessel was ligated, with the femoral head receiving its blood supply from the inferior vincular artery alone. Gadolinium contrast-enhanced MRI was then performed simultaneously on both control and test specimens. Polyurethane was injected, and gross dissection of the specimens was performed to confirm the extraosseous anatomy and the injection of contrast. The inferior vincular artery was found in every specimen and had a significant contribution to the vascularity of the femoral head. The head was divided into four quadrants: medial (0), superior (1), lateral (2) and inferior (3). In our study specimens the inferior vincular artery contributed a mean of 56% (25% to 90%) of blood flow in quadrant 0, 34% (14% to 80%) of quadrant 1, 37% (18% to 48%) of quadrant 2 and 68% (20% to 98%) in quadrant 3. Extensive intra-osseous anastomoses existed between the superior retinacular arteries, the inferior vincular artery and the subfoveal plexus.
We assessed the predictive value of the macroscopic and detailed microscopic appearance of the coracoacromial ligament, subacromial bursa and rotator-cuff tendon in 20 patients undergoing subacromial decompression for impingement in the absence of full-thickness tears of the rotator cuff. Histologically, all specimens had features of degenerative change and oedema in the extracellular matrix. Inflammatory cells were seen, but there was no evidence of chronic inflammation. However, the outcome was not related to cell counts. At three months the mean Oxford shoulder score had improved from 29.2 (20 to 40) to 39.4 (28 to 48) (p <
0.0001) and at six months to 45.5 (36 to 48) (p <
0.0001). At six months, although all patients had improved, the seven patients with a hooked acromion had done so to a less extent than those with a flat or curved acromion judged by their mean Oxford shoulder scores of 43.5 and 46.5 respectively (p = 0.046). All five patients with partial-thickness tears were within this group and demonstrated less improvement than the patients with no tear (mean Oxford shoulder scores 43.2 and 46.4, respectively, p = 0.04). These findings imply that in the presence of a partial-thickness tear subacromial decompression may require additional specific treatment to the rotator cuff if the outcome is to be improved further.
Carbonate-substituted hydroxyapatite (CHA) is more osteoconductive and more resorbable than hydroxyapatite (HA), but the underlying mode of its action is unclear. We hypothesised that increased resorption of the ceramic by osteoclasts might subsequently upregulate osteoblasts by a coupling mechanism, and sought to test this in a large animal model. Defects were created in both the lateral femoral condyles of 12 adult sheep. Six were implanted with CHA granules bilaterally, and six with HA. Six of the animals in each group received the bisphosphonate zoledronate (0.05 mg/kg), which inhibits the function of osteoclasts, intra-operatively. After six weeks bony ingrowth was greater in the CHA implants than in HA, but not in the animals given zoledronate. Functional osteoclasts are necessary for the enhanced osteoconduction seen in CHA compared with HA.
A total of 20 pairs of fresh-frozen cadaver femurs were assigned to four alignment groups consisting of relative varus (10° and 20°) and relative valgus (10° and 20°), 75 composite femurs of two neck geometries were also used. In both the cadaver and the composite femurs, placing the component in 20° of valgus resulted in a significant increase in load to failure. Placing the component in 10° of valgus had no appreciable effect on increasing the load to failure except in the composite femurs with varus native femoral necks. Specimens in 10° of varus were significantly weaker than the neutrally-aligned specimens. The results suggest that retention of the intact proximal femoral strength occurs at an implant angulation of ≥ 142°. However, the benefit of extreme valgus alignment may be outweighed in clinical practice by the risk of superior femoral neck notching, which was avoided in this study.
Surgery is considered to be the most effective treatment for cartilaginous tumours. In recent years, a trend has emerged for patients with low-grade tumours to be treated less invasively using curettage followed by various forms of adjuvant therapy. We investigated the potential for phenol to be used as an adjuvant. Using a human chondrosarcoma-derived cartilage-producing cell line OUMS-27 as an in vitro model we studied the cytotoxic effect of phenol and ethanol. Since ethanol is the standard substance used to rinse phenol out of a bone cavity, we included an assessment of ethanol to see whether this was an important secondary factor with respect to cell death. The latter was assessed by flow cytometry. A cytotoxic effect was found for concentrations of phenol of 1.5% and of ethanol of 42.5%. These results may provide a clinical rationale for the use of both phenol and ethanol as adjuvant therapy after intralesional curettage in low-grade central chondrosarcoma and justify further investigation.
Several experimental models have been used to produce intravascular fat embolism. We have developed a simple technique to induce fat embolism using corn oil emulsified with distilled water to form fatty micelles. Fat embolism was produced by intravenous administration of these fatty micelles in anaesthetised rats, causing alveolar oedema, haemorrhage and increased lung weight. Histopathological examination revealed fatty droplets and fibrin thrombi in the lung, kidney and brain. The arteriolar lumen was filled with fatty deposits. Following fat embolism, hypoxia and hypercapnia occurred. The plasma phospholipase A2, nitrate/nitrite, methylguidanidine and proinflammatory cytokines were significantly increased. Mass spectrometry showed that the main ingredient of corn oil was oleic acid. This simple technique may be applied as a new animal model for the investigation of the mechanisms involved in the fat embolism syndrome.
We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks. The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022). The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament.
We compared time-dependent changes in the biomechanical properties of single-and double-row repair of a simulated acute tear of the rotator cuff in rabbits to determine the effect of the fixation techniques on the healing process. A tear of the supraspinatus tendon was created in 80 rabbits which were separated into two equal groups. A single-row repair with two suture anchors was conducted in group 1 and a double-row repair with four suture anchors in group 2. A total of ten intact contralateral shoulder joints was used as a control group. Biomechanical testing was performed immediately post-operatively and at four and eight weeks, and histological analysis at four and eight weeks. The mean load to failure in group 2 animals was greater than in group 1, but both groups remained lower than the control group at all intervals. Histological analysis showed similar healing properties at four and eight weeks in both groups, but a significantly larger number of healed tendon-bone interfaces were identified in group 2 than in group 1 at eight weeks (p <
0.012). The ultimate load to failure increased with the number of suture anchors used immediately post-operatively, and at four and eight weeks. The increased load to failure at eight weeks seemed to be related to the increase in the surface area of healed tendon-to-bone in the double-row repair group.
Human articular cartilage samples were retrieved from the resected material of patients undergoing total knee replacement. Samples underwent automated controlled freezing at various stages of preparation: as intact articular cartilage discs, as minced articular cartilage, and as chondrocytes immediately after enzymatic isolation from fresh articular cartilage. Cell viability was examined using a LIVE/DEAD assay which provided fluorescent staining. Isolated chondrocytes were then cultured and Alamar blue assay was used for estimation of cell proliferation at days zero, four, seven, 14, 21 and 28 after seeding. The mean percentage viabilities of chondrocytes isolated from group A (fresh, intact articular cartilage disc samples), group B (following cryopreservation and then thawing, after initial isolation from articular cartilage), group C (from minced cryopreserved articular cartilage samples), and group D (from cryopreserved intact articular cartilage disc samples) were 74.7% (95% confidence interval (CI) 73.1 to 76.3), 47.0% (95% CI 43 to 51), 32.0% (95% CI 30.3 to 33.7) and 23.3% (95% CI 22.1 to 24.5), respectively. Isolated chondrocytes from all groups were expanded by the following mean proportions after 28 days of culturing: group A ten times, group B 18 times, group C 106 times, and group D 154 times. This experiment demonstrated that it is possible to isolate viable chondrocytes from cryopreserved intact human articular cartilage which can then be successfully cultured.
We evaluated the possible induction of a systemic immune response to increase anti-tumour activity by the re-implantation of destructive tumour tissue treated by liquid nitrogen in a murine osteosarcoma (LM8) model. The tumours were randomised to treatment by excision alone or by cryotreatment after excision. Tissue from the tumour was frozen in liquid nitrogen, thawed in distilled water and then re-implanted in the same animal. In addition, some mice received an immunological response modifier of OK-432 after treatment. We measured the levels of interferon-gamma and interleukin-12 cytokines and the cytotoxicity activity of splenocytes against murine LM8 osteosarcoma cells. The number of lung and the size of abdominal metastases were also measured. Re-implantation of tumour tissue after cryotreatment activated immune responses and inhibited metastatic tumour growth. OK-432 synergistically enhanced the anti-tumour effect. Our results suggest that the treatment of malignant bone tumours by reconstruction using autografts containing tumours which have been treated by liquid nitrogen may be of clinical value.
This study compared the effect of a computer-assisted and a traditional surgical technique on the kinematics of the glenohumeral joint during passive abduction after hemiarthroplasty of the shoulder for the treatment of fractures. We used seven pairs of fresh-frozen cadaver shoulders to create simulated four-part fractures of the proximal humerus, which were then reconstructed with hemiarthroplasty and reattachment of the tuberosities. The specimens were randomised, so that one from each pair was repaired using the computer-assisted technique, whereas a traditional hemiarthroplasty without navigation was performed in the contralateral shoulder. Kinematic data were obtained using an electromagnetic tracking device. The traditional technique resulted in posterior and inferior translation of the humeral head. No statistical differences were observed before or after computer-assisted surgery. Although it requires further improvement, the computer-assisted approach appears to allow glenohumeral kinematics to more closely replicate those of the native joint, potentially improving the function of the shoulder and extending the longevity of the prosthesis.
Compartment syndrome of the foot requires urgent surgical treatment. Currently, there is still no agreement on the number and location of the myofascial compartments of the foot. The aim of this cadaver study was to provide an anatomical basis for surgical decompression in the event of compartment syndrome. We found that there were three tough vertical fascial septae that extended from the hindfoot to the midfoot on the plantar aspect of the foot. These septae separated the posterior half of the foot into three compartments. The medial compartment containing the abductor hallucis was surrounded medially by skin and subcutaneous fat and laterally by the medial septum. The intermediate compartment, containing the flexor digitorum brevis and the quadratus plantae more deeply, was surrounded by the medial septum medially, the intermediate septum laterally and the main plantar aponeurosis on its plantar aspect. The lateral compartment containing the abductor digiti minimi was surrounded medially by the intermediate septum, laterally by the lateral septum and on its plantar aspect by the lateral band of the main plantar aponeurosis. No distinct myofascial compartments exist in the forefoot. Based on our findings, in theory, fasciotomy of the hindfoot compartments through a modified medial incision would be sufficient to decompress the foot.