Advertisement for orthosearch.org.uk
Results 1 - 20 of 113
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 261 - 268
1 Mar 2023
Ruhr M Huber G Niki Y Lohner L Ondruschka B Morlock MM

Aims. The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Methods. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans. Results. Overimpaction reduced primary acetabular component stability (p = 0.038) but did not significantly increase strain release after implantation (p = 0.117) or plastic deformations (p = 0.193). Higher press-fits were associated with larger polar gaps for the 1 Hz reference impaction (p = 0.002, R. 2. = 0.77), with a similar trend for overimpaction (p = 0.082, R. 2. = 0.31). High-frequency impaction did not significantly increase primary stability (p = 0.170) at lower impaction forces (p = 0.001); it was associated with smaller plastic deformations (p = 0.035, R. 2. = 0.34) and a trend for increased acetabular component relaxation between strokes (p = 0.112). Higher press-fit was not related to larger polar gaps for the 6 Hz impaction (p = 0.346). Conclusion. Overimpaction of press-fit acetabular components should be prevented since additional strokes can be associated with increased bone damage and reduced primary stability as shown in this study. High-frequency impaction at 6 Hz was shown to be beneficial compared with 1 Hz impaction. This benefit has to be confirmed in clinical studies. Cite this article: Bone Joint J 2023;105-B(3):261–268


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 644 - 649
1 Apr 2021
Alsousou J Oragu E Martin A Strickland L Newman S Kendrick B Taylor A Glyn-Jones S

Aims

The aim of this prospective cohort study was to evaluate the early migration of the TriFit cementless proximally coated tapered femoral stem using radiostereometric analysis (RSA).

Methods

A total of 21 patients (eight men and 13 women) undergoing primary total hip arthroplasty (THA) for osteoarthritis of the hip were recruited in this study and followed up for two years. Two patients were lost to follow-up. All patients received a TriFit stem and Trinity Cup with a vitamin E-infused highly cross-linked ultra-high molecular weight polyethylene liner. Radiographs for RSA were taken postoperatively and then at three, 12, and 24 months. Oxford Hip Score (OHS), EuroQol five-dimension questionnaire (EQ-5D), and adverse events were reported.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 426 - 432
1 Mar 2005
Mueller CA Eingartner C Schreitmueller E Rupp S Goldhahn J Schuler F Weise K Pfister U Suedkamp NP

The treatment of fractures of the proximal tibia is complex and makes great demands on the implants used. Our study aimed to identify what levels of primary stability could be achieved with various forms of osteosynthesis in the treatment of diaphyseal fractures of the proximal tibia. Pairs of human tibiae were investigated. An unstable fracture was simulated by creating a defect at the metaphyseal-diaphyseal junction. Six implants were tested in a uniaxial testing device (Instron) using the quasi-static and displacement-controlled modes and the force-displacement curve was recorded. The movements of each fragment and of the implant were recorded video-optically (MacReflex, Qualysis). Axial deviations were evaluated at 300 N. The results show that the nailing systems tolerated the highest forces. The lowest axial deviations in varus and valgus were also found for the nailing systems; the highest axial deviations were recorded for the buttress plate and the less invasive stabilising system (LISS). In terms of rotational displacement the LISS was better than the buttress plate. In summary, it was found that higher loads were better tolerated by centrally placed load carriers than by eccentrically placed ones. In the case of the latter, it appears advantageous to use additive procedures for medial buttressing in the early phase


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1148 - 1156
1 Sep 2018
Ferguson RJ Broomfield JA Malak TT Palmer AJR Whitwell D Kendrick B Taylor A Glyn-Jones S

Aims

The aim of this study was to determine the stability of a new short femoral stem compared with a conventional femoral stem in patients undergoing cementless total hip arthroplasty (THA), in a prospective randomized controlled trial using radiostereometric analysis (RSA).

Patients and Methods

A total of 53 patients were randomized to receive cementless THA with either a short femoral stem (MiniHip, 26 patients, mean age: 52 years, nine male) or a conventional length femoral stem (MetaFix, 23 patients, mean age: 53 years, 11 male). All patients received the same cementless acetabular component. Two-year follow-up was available on 38 patients. Stability was assessed through migration and dynamically inducible micromotion. Radiographs for RSA were taken postoperatively and at three, six, 12, 18, and 24 months.


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1146 - 1147
1 Sep 2018
Ferguson RJ Broomfield JA Malak TT Palmer AJR Whitwell D Kendrick B Taylor A Glyn-Jones S


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 962 - 970
1 Jul 2007
Albert C Patil S Frei H Masri B Duncan C Oxland T Fernlund G

This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting.

Impaction allografting was carried out in human cadaveric femurs. In one group the cement was pressurised conventionally but in the other it was not pressurised. Migration and micromotion of the implant were measured under simulated walking loads. The specimens were then cross-sectioned and penetration of the cement measured.

Around the distal half of the implant we found approximately 70% and 40% of contact of the cement with the endosteum in the pressure and no-pressure groups, respectively. The distal migration/micromotion, and valgus/varus migration were significantly higher in the no-pressure group than in that subjected to pressure. These motion components correlated negatively with the mean area of cement and its contact with the endosteum.

The presence of cement at the endosteum appears to play an important role in the initial stability of the implant following impaction allografting.


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 455 - 461
1 Apr 2014
Evola FR Evola G Graceffa A Sessa A Pavone V Costarella L Sessa G Avondo S

In 2012 we reviewed a consecutive series of 92 uncemented THRs performed between 1986 and 1991 at our institution using the CLS Spotorno stem, in order to assess clinical outcome and radiographic data at a minimum of 21 years. The series comprised 92 patients with a mean age at surgery of 59.6 years (39 to 77) (M:F 43;49).

At the time of this review, seven (7.6%) patients had died and two (2.2%) were lost to follow-up. The 23-year Kaplan–Meier survival rates were 91.5% (95% confidence intervals (CI) 85.4% to 97.6%; 55 hips at risk) and 80.3% (95% CI, 71.8% to 88.7%; 48 hips at risk) respectively, with revision of the femoral stem or of any component as endpoints. At the time of this review, 76 patients without stem revision were assessed clinically and radiologically (mean follow-up 24.0 years (21.5 to 26.5)). For the 76 unrevised hips the mean Harris hip score was 87.1 (65 to 97). Femoral osteolysis was detected in five hips (6.6%) only in Gruen zone 7. Undersized stems were at higher risk of revision owing to aseptic loosening (p = 0.0003). Patients implanted with the stem in a varus position were at higher risk of femoral cortical hypertrophy and thigh pain (p = 0.0006 and p = 0.0007, respectively).

In our study, survival, clinical outcome and radiographic data remained excellent in the third decade after implantation. Nonetheless, undersized stems were at higher risk of revision owing to aseptic loosening.

Cite this article: Bone Joint J 2014;96-B:455–61.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 760 - 767
1 Jul 2019
Galea VP Rojanasopondist P Laursen M Muratoglu OK Malchau H Bragdon C

Aims. Vitamin E-diffused, highly crosslinked polyethylene (VEPE) and porous titanium-coated (PTC) shells were introduced in total hip arthroplasty (THA) to reduce the risk of aseptic loosening. The purpose of this study was: 1) to compare the wear properties of VEPE to moderately crosslinked polyethylene; 2) to assess the stability of PTC shells; and 3) to report their clinical outcomes at seven years. Patients and Methods. A total of 89 patients were enrolled into a prospective study. All patients received a PTC shell and were randomized to receive a VEPE liner (n = 44) or a moderately crosslinked polyethylene (ModXLPE) liner (n = 45). Radiostereometric analysis (RSA) was used to measure polyethylene wear and component migration. Differences in wear were assessed while adjusting for body mass index, activity level, acetabular inclination, anteversion, and head size. Plain radiographs were assessed for radiolucency and patient-reported outcome measures (PROMs) were administered at each follow-up. Results. In total, 73 patients (82%) completed the seven-year visit. Mean seven-year linear proximal penetration was -0.07 mm (. sd. 0.16) and 0.00 mm (. sd. 0.22) for the VEPE and ModXLPE cohorts, respectively (p = 0.116). PROMs (p = 0.310 to 0.807) and radiolucency incidence (p = 0.330) were not different between the polyethylene cohorts. The mean proximal shell migration rate was 0.04 mm per year (. sd. 0.09). At seven years, patients with radiolucency (34%) demonstrated greater migration (mean difference: 0.6 mm (. sd. 0.2); p < 0.001). PROMs were lower for patients with radiolucency and greater proximal migration (p = 0.009 to p = 0.045). No implants were revised for aseptic loosening. Conclusion. This is the first randomized controlled trial to report seven-year RSA results for VEPE. All wear rates were below the previously reported osteolysis threshold (0.1 mm per year). PTC shells demonstrated acceptable primary stability through seven years, as indicated by low migration and lack of aseptic loosening. However, patients with acetabular radiolucency were associated with higher shell migration and lower PROM scores. Cite this article: Bone Joint J 2019;101-B:760–767


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 54 - 58
1 May 2024
Wassilew GI Zimmerer A Fischer M Nonnenmacher L O'Hara L Hube R

Aims

The use of a porous metal shell supported by two augments with the ‘footing’ technique is one solution to manage Paprosky IIIB acetabular defects in revision total hip arthroplasty. The aim of this study was to assess the medium-term implant survival and radiological and clinical outcomes of this technique.

Methods

We undertook a retrospective, two-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the ‘footing’ technique for Paprosky IIIB acetabular defects between 2007 and 2020. The median age at the time of surgery was 64.4 years (interquartile range (IQR) 54.4 to 71.0). The median follow-up was 3.9 years (IQR 3.1 to 7.0).


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation.

Cite this article: Bone Joint J 2024;106-B(9):892–897.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity.

Cite this article: Bone Joint J 2024;106-B(4):312–318.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 121 - 129
1 Mar 2024
Orce Rodríguez A Smith PN Johnson P O'Sullivan M Holder C Shimmin A

Aims

In recent years, the use of a collared cementless femoral prosthesis has risen in popularity. The design intention of collared components is to transfer some load to the resected femoral calcar and prevent implant subsidence within the cancellous bone of the metaphysis. Conversely, the load transfer for a cemented femoral prosthesis depends on the cement-component and cement-bone interface interaction. The aim of our study was to compare the three most commonly used collared cementless components and the three most commonly used tapered polished cemented components in patients aged ≥ 75 years who have undergone a primary total hip arthroplasty (THA) for osteoarthritis (OA).

Methods

Data from the Australian Orthopaedic Association National Joint Replacement Registry from 1 September 1999 to 31 December 2022 were analyzed. Collared cementless femoral components and cemented components were identified, and the three most commonly used components in each group were analyzed. We identified a total of 11,278 collared cementless components and 47,835 cemented components. Hazard ratios (HRs) from Cox proportional hazards models, adjusting for age and sex, were obtained to compare the revision rates between the groups.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 130 - 136
1 Mar 2024
Morlock M Perka C Melsheimer O Kirschbaum SM

Aims

Despite higher rates of revision after total hip arthroplasty (THA) being reported for uncemented stems in patients aged > 75 years, they are frequently used in this age group. Increased mortality after cemented fixation is often used as a justification, but recent data do not confirm this association. The aim of this study was to investigate the influence of the design of the stem and the type of fixation on the rate of revision and immediate postoperative mortality, focusing on the age and sex of the patients.

Methods

A total of 333,144 patients with primary osteoarthritis (OA) of the hip who underwent elective THA between November 2012 and September 2022, using uncemented acetabular components without reconstruction shells, from the German arthroplasty registry were included in the study. The revision rates three years postoperatively for four types of stem (uncemented, uncemented with collar, uncemented short, and cemented) were compared within four age groups: < 60 years (Young), between 61 and 70 years (Mid-I), between 71 and 80 years (Mid-II), and aged > 80 years (Old). A noninferiority analysis was performed on the most frequently used designs of stem.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 646 - 655
1 Jul 2024
Longo UG Gulotta LV De Salvatore S Lalli A Bandini B Giannarelli D Denaro V

Aims

Proximal humeral fractures are the third most common fracture among the elderly. Complications associated with fixation include screw perforation, varus collapse, and avascular necrosis of the humeral head. To address these challenges, various augmentation techniques to increase medial column support have been developed. There are currently no recent studies that definitively establish the superiority of augmented fixation over non-augmented implants in the surgical treatment of proximal humeral fractures. The aim of this systematic review and meta-analysis was to compare the outcomes of patients who underwent locking-plate fixation with cement augmentation or bone-graft augmentation versus those who underwent locking-plate fixation without augmentation for proximal humeral fractures.

Methods

The search was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Articles involving patients with complex proximal humeral fractures treated using open reduction with locking-plate fixation, with or without augmentation, were considered. A meta-analysis of comparative studies comparing locking-plate fixation with cement augmentation or with bone-graft augmentation versus locking-plate fixation without augmentation was performed.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims

Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA.

Methods

This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1589 - 1596
1 Dec 2016
Magill P Blaney J Hill JC Bonnin MP Beverland DE

Aims. Our aim was to report survivorship data and lessons learned with the Corail/Pinnacle cementless total hip arthroplasty (THA) system. Patients and Methods. Between August 2005 and March 2015, a total of 4802 primary cementless Corail/Pinnacle THAs were performed in 4309 patients. In March 2016, we reviewed these hips from a prospectively maintained database. Results . A total of 80 hips (1.67%) have been revised which is equivalent to a cumulative risk of revision of 2.5% at ten years. The rate of revision was not significantly higher in patients aged ≥ 70 years (p = 0.93). The leading indications for revision were instability (n = 22, 0.46%), infection (n = 20, 0.42%), aseptic femoral loosening (n = 15, 0.31%) and femoral fracture (n = 6, 0.12%). There were changes in the surgical technique with respect to the Corail femoral component during the ten-year period involving a change to collared components and a trend towards larger size. These resulted in a decrease in the rate of iatrogenic femoral fracture and a decrease in the rate of aseptic loosening. Conclusion. The rate of revision in this series is comparable with the best performing THAs in registry data. Most revisions were not directly related to the implants. Despite extensive previous experience with cemented femoral components, the senior author noted a learning curve requiring increased focus on primary stability. The number of revisions related to the femoral component is reducing. Any new technology has a learning curve that may be independent of surgical experience. Cite this article: Bone Joint J 2016;98-B:1589–96


The Bone & Joint Journal
Vol. 96-B, Issue 7 | Pages 896 - 901
1 Jul 2014
Reiner T Jaeger S Schwarze M Klotz MC Beckmann NA Bitsch RG

Aseptic loosening of the femoral component is an important indication for revision surgery in unicompartmental knee replacement (UKR). A new design of femoral component with an additional peg was introduced for the cemented Oxford UKR to increase its stability. The purpose of this study was to compare the primary stability of the two designs of component. Medial Oxford UKR was performed in 12 pairs of human cadaver knees. In each pair, one knee received the single peg and one received the twin peg design. Three dimensional micromotion and subsidence of the component in relation to the bone was measured under cyclical loading at flexion of 40° and 70° using an optical measuring system. Wilcoxon matched pairs signed-rank test was performed to detect differences between the two groups. . There was no significant difference in the relative micromotion (p = 0.791 and 0.380, respectively) and subsidence (p = 0.301 and 0.176, respectively) of the component between the two groups at both angles of flexion. Both designs of component offered good strength of fixation in this cadaver study. Cite this article: Bone Joint J 2014;96-B:896–901


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 3 | Pages 294 - 303
1 Mar 2009
Lindner T Kanakaris NK Marx B Cockbain A Kontakis G Giannoudis PV

Failure of fixation is a common problem in the treatment of osteoporotic fractures around the hip. The reinforcement of bone stock or of fixation of the implant may be a solution. Our study assesses the existing evidence for the use of bone substitutes in the management of these fractures in osteoporotic patients. Relevant publications were retrieved through Medline research and further scrutinised. Of 411 studies identified, 22 met the inclusion criteria, comprising 12 experimental and ten clinical reports. The clinical studies were evaluated with regard to their level of evidence. Only four were prospective and randomised. Polymethylmethacrylate and calcium-phosphate cements increased the primary stability of the implant-bone construct in all experimental and clinical studies, although there was considerable variation in the design of the studies. In randomised, controlled studies, augmentation of intracapsular fractures of the neck of the femur with calcium-phosphate cement was associated with poor long-term results. There was a lack of data on the long-term outcome for trochanteric fractures. Because there were only a few, randomised, controlled studies, there is currently poor evidence for the use of bone cement in the treatment of fractures of the hip


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 467 - 471
1 Apr 2006
Leichtle UG Leichtle CI Schmidt B Martini F

Peri-prosthetic bone loss caused by stress shielding may be associated with aseptic loosening of femoral components. In order to increase primary stability and to reduce stress shielding, a three-dimensional, cementless individual femoral (Evolution K) component was manufactured using pre-operative CT scans. Using dual energy x-ray absorptiometry, peri-prosthetic bone density was measured in 43 patients, three months, six months, 3.6 and 4.6 years after surgery. At final follow-up there was a significant reduction in mean bone density in the proximal Gruen zones of −30.3% (zone 7) and −22.8% (zone 1). The density in the other zones declined by a mean of between −4% and −16%. We conclude that the manufacture of a three-dimensional, custom-made femoral component could not prevent a reduction in peri-prosthetic bone density


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 8 | Pages 1049 - 1053
1 Aug 2011
Putzer D Mayr E Haid C Reinthaler A Nogler M

In revision total hip replacement, bone loss can be managed by impacting porous bone chips. In order to guarantee sufficient mechanical strength, the bone chips have to be compacted. The aim of this study was to determine in an in vitro simulation whether the use of a pneumatic hammer leads to higher primary stability than manual impaction. Bone mass characteristics were measured by force and distance variation of a penetrating punch, which was lowered into a plastic cup filled with bone chips. From these measurements bulk density, contact stiffness, impaction hardness and penetration resistance were calculated for different durations of impaction. We found that the pneumatic method reached higher values of impaction hardness, contact stiffness and bulk density suggesting an increase in stability of the implant. No significant differences were found between the two different methods concerning the penetration resistance. The pneumatic method might reduce the risk of fracture in vivo, as force peaks are smaller and applied for a shorter period. Results from manual impaction showed higher variability and depend much on the experience of the surgeon. The pneumatic hammer is a suitable tool to standardise the impaction process