Aims. The aim of this study was to estimate the 90-day risk of revision for periprosthetic femoral fracture associated with design features of cementless femoral stems, and to investigate the effect of a collar on this risk using a biomechanical in vitro model. Materials and Methods. A total of 337 647 primary total hip arthroplasties (THAs) from the United Kingdom National Joint Registry (NJR) were included in a multivariable survival and regression analysis to identify the adjusted hazard of revision for periprosthetic fracture following primary THA using a cementless stem. The effect of a collar in cementless THA on this risk was evaluated in an in vitro model using paired fresh frozen cadaveric femora. Results. The prevalence of early revision for periprosthetic fracture was 0.34% (1180/337 647) and 44.0% (520/1180) occurred within 90 days of surgery. Implant risk factors included: collarless stem, non-grit-blasted finish, and triple-tapered design. In the in vitro model, a medial calcar collar consistently improved the stability and resistance to fracture. Conclusion. Analysis of features of stem design in registry data is a useful method of identifying implant characteristics that affect the risk of early periprosthetic fracture around a cementless femoral stem. A collar on the calcar reduced the risk of an early periprosthetic fracture and this was confirmed by
Polished taper-slip (PTS) cemented stems have an excellent clinical track record and are the most common stem type used in primary total hip arthroplasty (THA) in the UK. Due to low rates of aseptic loosening, they have largely replaced more traditional composite beam (CB) cemented stems. However, there is now emerging evidence from multiple joint registries that PTS stems are associated with higher rates of postoperative periprosthetic femoral fracture (PFF) compared to their CB stem counterparts. The risk of both intraoperative and postoperative PFF remains greater with uncemented stems compared to either of these cemented stem subtypes. PFF continues to be a devastating complication following primary THA and is associated with high complication and mortality rates. Recent efforts have focused on identifying implant-related risk factors for PFF in order to guide preventative strategies, and therefore the purpose of this article is to present the current evidence on the effect of cemented femoral stem design on the risk of PFF. Cite this article:
The aim of the LightFix Trial was to evaluate the clinical outcomes for one year after the treatment of impending and completed pathological fractures of the humerus using the IlluminOss System (IS), and to analyze the performance of this device. A total of 81 patients with an impending or completed pathological fracture were enrolled in a multicentre, open label single cohort study and treated with IS. Inclusion criteria were visual analogue scale (VAS) Pain Scores > 60 mm/100 mm and Mirels’ Score ≥ 8. VAS pain, Musculoskeletal Tumor Society (MSTS) Upper Limb Function, and The European Organization for Research and Treatment of Cancer QoL Group Bone Metastases Module (QLQ-BM22) scores were all normalized to 100, and radiographs were obtained at baseline and at 14, 30, 90, 180, and 360 days postoperatively.Aims
Methods
In recent years, the use of a collared cementless femoral prosthesis has risen in popularity. The design intention of collared components is to transfer some load to the resected femoral calcar and prevent implant subsidence within the cancellous bone of the metaphysis. Conversely, the load transfer for a cemented femoral prosthesis depends on the cement-component and cement-bone interface interaction. The aim of our study was to compare the three most commonly used collared cementless components and the three most commonly used tapered polished cemented components in patients aged ≥ 75 years who have undergone a primary total hip arthroplasty (THA) for osteoarthritis (OA). Data from the Australian Orthopaedic Association National Joint Replacement Registry from 1 September 1999 to 31 December 2022 were analyzed. Collared cementless femoral components and cemented components were identified, and the three most commonly used components in each group were analyzed. We identified a total of 11,278 collared cementless components and 47,835 cemented components. Hazard ratios (HRs) from Cox proportional hazards models, adjusting for age and sex, were obtained to compare the revision rates between the groups.Aims
Methods
Elastic stable intramedullary nailing (ESIN)
is generally acknowledged to be the treatment of choice for displaced diaphyseal
femoral fractures in children over the age of three years, although
complication rates of up to 50% are described. Pre-bending the nails
is recommended, but there are no published data to support this.
Using synthetic bones and a standardised simulated fracture, we
performed
The aim of this randomised, controlled in vivo study in an ovine model was to investigate the effect of cylic pneumatic pressure on fracture healing. We performed a transverse osteotomy of the right radius in 37 sheep. They were randomised to a control group or a treatment group where they received cyclic loading of the osteotomy by the application of a pressure cuff around the muscles of the proximal forelimb. Sheep from both groups were killed at four or six weeks. Radiography, ultrasonography,
Mechanical and
Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and
We studied the effects of hyperbaric oxygen (HBO) and zoledronic acid (ZA) on posterior lumbar fusion using a validated animal model. A total of 40 New Zealand white rabbits underwent posterior lumbar fusion at L5–6 with autogenous iliac bone grafting. They were divided randomly into four groups as follows: group 1, control; group 2, HBO (2.4 atm for two hours daily); group 3, local ZA (20 μg of ZA mixed with bone graft); and group 4, combined HBO and local ZA. All the animals were killed six weeks after surgery and the fusion segments were subjected to radiological analysis, manual palpation,
This study investigated the quality and quantity of healing of a bone defect following intramedullary reaming undertaken by two fundamentally different systems; conventional, using non-irrigated, multiple passes; or suction/irrigation, using one pass. The result of a measured re-implantation of the product of reaming was examined in one additional group. We used 24 Swiss mountain sheep with a mean tibial medullary canal diameter between 8 mm and 9 mm. An 8 mm ‘napkin ring’ defect was created at the mid-diaphysis. The wound was either surgically closed or occluded. The medullary cavity was then reamed to 11 mm. The Reamer/Irrigator/Aspirator (RIA) System was used for the reaming procedure in groups A (RIA and autofilling) and B (RIA, collected reamings filled up), whereas reaming in group C (Synream and autofilling) was performed with the Synream System. The defect was allowed to auto-fill with reamings in groups A and C, but in group B, the defect was surgically filled with collected reamings. The tibia was then stabilised with a solid locking Unreamed Humerus Nail (UHN), 9.5 mm in diameter. The animals were killed after six weeks. After the implants were removed, measurements were taken to assess the stiffness, strength and callus formation at the site of the defect. There was no significant difference between healing after conventional reaming or suction/irrigation reaming. A significant improvement in the quality of the callus was demonstrated by surgically placing captured reamings into the defect using a graft harvesting system attached to the aspirator device. This was confirmed by
We have reviewed 25 cases of focal femoral osteolysis in radiographically stable, cemented femoral implants. In three hips retrieved at post-mortem from two patients, we have been able to make a detailed biomechanical and histological analysis. The interval between arthroplasty and the appearance of focal osteolysis on clinical radiographs ranged from 40 to 168 months, and in over 70% of the cases this did not appear until after five or more years. Few had significant pain and there was no relation to age, sex or original diagnosis. The most common site for osteolysis were Gruen zones 2 and 3 on the anteroposterior radiograph and zones 5 and 6 on the lateral radiograph. In 15 cases (60%), the area of osteolysis corresponded to either a defect in the cement mantle or an area of very thin cement. The rate of progression of these lesions was variable, but to date only one has progressed to gross loosening of the femoral component. The back-scatter scanning electron microscopic examination of serial sections and
The aim of this study was to determine the immediate post-fixation stability of a distal tibial fracture fixed with an intramedullary nail using a biomechanical model. This was used as a surrogate for immediate weight-bearing postoperatively. The goal was to help inform postoperative protocols. A biomechanical model of distal metaphyseal tibial fractures was created using a fourth-generation composite bone model. Three fracture patterns were tested: spiral, oblique, and multifragmented. Each fracture extended to within 4 cm to 5 cm of the plafond. The models were nearly-anatomically reduced and stabilized with an intramedullary nail and three distal locking screws. Cyclic loading was performed to simulate normal gait. Loading was completed in compression at 3,000 N at 1 Hz for a total of 70,000 cycles. Displacement (shortening, coronal and sagittal angulation) was measured at regular intervals.Aims
Methods
Our aim was to examine the potential of autologous perichondral tissue to form a meniscal replacement. In 18 mature sheep we performed a complete medial meniscectomy. The animals were then divided into two groups: 12 had a meniscal replacement using strips of autologous perichondral tissue explanted from the lower rib (group G) and six (group C) served as a control group without a meniscal replacement. In all animals restriction from weight-bearing was achieved by means of transection and partial resection of tendo Achillis. Six animals (four from group G and two from group C) were each killed at 3, 6 and 12 months. The grafts and the underlying articular cartilage were removed and studied by gross macroscopic examination, light microscopy, SEM, polarised light examination, and by
Debate continues regarding the optimum management of periprosthetic distal femoral fractures (PDFFs). This study aims to determine which operative treatment is associated with the lowest perioperative morbidity and mortality when treating low (Su type II and III) PDFFs comparing lateral locking plate fixation (LLP-ORIF) or distal femoral arthroplasty (DFA). This was a retrospective cohort study of 60 consecutive unilateral (PDFFs) of Su types II (40/60) and III (20/60) in patients aged ≥ 60 years: 33 underwent LLP-ORIF (mean age 81.3 years (SD 10.5), BMI 26.7 (SD 5.5); 29/33 female); and 27 underwent DFA (mean age 78.8 years (SD 8.3); BMI 26.7 (SD 6.6); 19/27 female). The primary outcome measure was reoperation. Secondary outcomes included perioperative complications, calculated blood loss, transfusion requirements, functional mobility status, length of acute hospital stay, discharge destination and mortality. Kaplan-Meier survival analysis was performed. Cox multivariate regression analysis was performed to identify risk factors for reoperation after LLP-ORIF.Aims
Methods
This exploratory randomized controlled trial (RCT) aimed to determine the splint-related outcomes when using the novel biodegradable wood-composite splint (Woodcast) compared to standard synthetic fibreglass (Dynacast) for the immobilization of undisplaced upper limb fractures in children. An exploratory RCT was performed at a tertiary paediatric referral hospital between 1 June 2018 and 30 September 2019. The intention-to-treat population consisted of 170 patients (mean age 8.42 years (SD 3.42); Woodcast (WCG), n = 84, 57 male (67.9%); Dynacast (DNG), n = 86, 58 male (67.4%)). Patients with undisplaced upper limb fractures were randomly assigned to WCG or DNG treatment groups. Primary outcome was the stress stability of the splint material, defined as absence of any deformations or fractures within the splint during study period. Secondary outcomes included patient satisfaction and medical staff opinion. Additionally, biomechanical and chemical analysis of the splint samples was carried out.Aims
Methods
The medial malleolus, once believed to be the primary stabilizer of the ankle, has been the topic of conflicting clinical and biomechanical data for many decades. Despite the relevant surgical anatomy being understood for almost 40 years, the optimal treatment of medial malleolar fractures remains unclear, whether the injury occurs in isolation or as part of an unstable bi- or trimalleolar fracture configuration. Traditional teaching recommends open reduction and fixation of medial malleolar fractures that are part of an unstable injury. However, there is recent evidence to suggest that nonoperative management of well-reduced fractures may result in equivalent outcomes, but without the morbidity associated with surgery. This review gives an update on the relevant anatomy and classification systems for medial malleolar fractures and an overview of the current literature regarding their management, including surgical approaches and the choice of implants. Cite this article: Abstract
The properties of impacted morsellised bone graft (MBG) in revision total knee arthroplasty (TKA) were studied in 12 horses. The left hind metatarsophalangeal joint was replaced by a human TKA. The horses were then randomly divided into graft and control groups. In the graft group, a unicondylar, lateral uncontained defect was created in the third metatarsal bone and reconstructed using autologous MBG before cementing the TKA. In the control group, a cemented TKA was implanted without the bone resection and grafting procedure. After four to eight months, the animals were killed and a
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods