Advertisement for orthosearch.org.uk
Results 1 - 50 of 867
Results per page:

Aims. The aim of this study was to assess the reproducibility and validity of cross table radiographs for measuring the anteversion of the acetabular component after total hip arthroplasty (THA) and to compare it with measurements using CT scans. Patients and Methods. A total of 29 patients who underwent THA between June 2010 and January 2016 were included. There were 17 men and 12 women. Their mean age was 43 years (26 to 65). Seven patients underwent a bilateral procedure. Thus, 36 THAs were included in the study. Lateral radiographs and CT scans were obtained post-operatively and radiographs repeated three weeks later. The anteversion of the acetabular component was measured using the method described by Woo and Morrey and the ischiolateral method described by Pulos et al and these were compared with the results obtained from CT scans. Results. The mean anteversion was 18.35° (3° to 38°) using Woo and Morrey’s method, 51.45° (30° to 85°) using the ischiolateral method and 21.22° (2° to 48°) using CT scans. The Pearson correlation coefficient was 0.754 for Woo and Morrey’s method and 0.925 for the ischiolateral method. There was a linear correlation between the measurements using the ischiolateral method and those using CT scans. We derived a simple linear equation between the value of the CT scan and that of ischiolateral method to deduce the CT scan value from that of ischiolateral method and vice versa. . Conclusion. The anteversion of the acetabular component measured using both plain radiographic methods was consistently valid with good interobserver reproducibility, but the ischiolateral method which is independent of pelvic tilt was more accurate. As CT is costly, associated with a high dose of radiation and not readily available, the ischiolateral method can be used for assessing the anteversion of the acetabular component. Cite this article: Bone Joint J 2017;99-B:1006–11


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1200 - 1209
14 Sep 2020
Miyamura S Lans J He JJ Murase T Jupiter JB Chen NC

Aims. We quantitatively compared the 3D bone density distributions on CT scans performed on scaphoid waist fractures subacutely that went on to union or nonunion, and assessed whether 2D CT evaluations correlate with 3D bone density evaluations. Methods. We constructed 3D models from 17 scaphoid waist fracture CTs performed between four to 18 weeks after fracture that did not unite (nonunion group), 17 age-matched scaphoid waist fracture CTs that healed (union group), and 17 age-matched control CTs without injury (control group). We measured the 3D bone density for the distal and proximal fragments relative to the triquetrum bone density and compared findings among the three groups. We then performed bone density measurements using 2D CT and evaluated the correlation with 3D bone densities. We identified the optimal cutoff with diagnostic values of the 2D method to predict nonunion with receiver operating characteristic (ROC) curves. Results. In the nonunion group, both the distal (100.2%) and proximal (126.6%) fragments had a significantly higher bone density compared to the union (distal: 85.7%; proximal: 108.3%) or control groups (distal: 91.6%; proximal: 109.1%) using the 3D bone density measurement, which were statistically significant for all comparisons. 2D measurements were highly correlated to 3D bone density measurements (Spearman’s correlation coefficient (R) = 0.85 to 0.95). Using 2D measurements, ROC curve analysis revealed the optimal cutoffs of 90.8% and 116.3% for distal and proximal fragments. This led to a sensitivity of 1.00 if either cutoff is met and a specificity of 0.82 when both cutoffs are met. Conclusion. Using 3D modelling software, nonunions were found to exhibit bone density increases in both the distal and proximal fragments in CTs performed between four to 18 weeks after fracture during the course of treatment. 2D bone density measurements using standard CT scans correlate well with 3D models. In patients with scaphoid fractures, CT bone density measurements may be useful in predicting the likelihood of nonunion. Cite this article: Bone Joint J 2020;102-B(9):1200–1209


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 178 - 183
1 Jan 2021
Kubik JF Rollick NC Bear J Diamond O Nguyen JT Kleeblad LJ Wellman DS Helfet DL

Aims. Malreduction of the syndesmosis has been reported in up to 52% of patients after fixation of ankle fractures. Multiple radiological parameters are used to define malreduction; there has been limited investigation of the accuracy of these measurements in differentiating malreduction from inherent anatomical asymmetry. The purpose of this study was to identify the prevalence of positive malreduction standards within the syndesmosis of native, uninjured ankles. Methods. Three observers reviewed 213 bilateral lower limb CT scans of uninjured ankles. Multiple measurements were recorded on the axial CT 1 cm above the plafond: anterior syndesmotic distance; posterior syndesmotic distance; central syndesmotic distance; fibular rotation; and sagittal fibular translation. Previously studied malreduction standards were evaluated on bilateral CT, including differences in: anterior, central and posterior syndesmotic distance; mean syndesmotic distance; fibular rotation; sagittal translational distance; and syndesmotic area. Unilateral CT was used to compare the anterior to posterior syndesmotic distances. Results. A difference of anterior to posterior syndesmotic distance > 2 mm was observed in 89% of ankles (n = 190) on unilateral CT assessment. Using bilateral CT, we found that 35% (n = 75) of normal ankles would be considered malreduced by current malreduction parameters. In 50 patients (23%), only one parameter was anomalous, 18 patients (8%) had two positive parameters and seven patients (3%) had three. Difference in fibular rotation had the lowest false positive rate of all parameters at 6%, whereas posterior syndesmotic distance difference had the highest at 15%. Conclusion. In this study, 35% of native, uninjured syndesmoses (n = 75) would be classified as malreduced by current diagnostic standards on bilateral CT and 89% had an asymmetric incisura on unilateral CT (n = 190). Current radiological parameters are insufficient to differentiate mild inherent anatomical asymmetry from malreduction of the syndesmosis. Cite this article: Bone Joint J 2021;103-B(1):178–183


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 8 | Pages 1097 - 1100
1 Aug 2012
Venkatesan M Fong A Sell PJ

The aim of this study was first, to determine whether CT scans undertaken to identify serious injury to the viscera were of use in detecting clinically unrecognised fractures of the thoracolumbar vertebrae, and second, to identify patients at risk of ‘missed injury’. . We retrospectively analysed CT scans of the chest and abdomen performed for blunt injury to the torso in 303 patients. These proved to be positive for thoracic and intra-abdominal injuries in only 2% and 1.3% of cases, respectively. However, 51 (16.8%) showed a fracture of the thoracolumbar vertebrae and these constituted our subset for study. There were eight women and 43 men with mean age of 45.2 years (15 to 94). There were 29 (57%) stable and 22 (43%) unstable fractures. Only 17 fractures (33.3%) had been anticipated after clinical examination. Of the 22 unstable fractures, 11 (50%) were anticipated. Thus, within the whole group of 303 patients, an unstable spinal injury was missed in 11 patients (3.6%); no harm resulted as they were all protected until the spine had been cleared. A subset analysis revealed that patients with a high Injury Severity Score, a low Glasgow Coma Scale and haemodynamic instability were most likely to have a significant fracture in the absence of positive clinical findings. This is the group at greatest risk. Clinical examination alone cannot detect significant fractures of the thoracolumbar spine. It should be combined with CT imaging to reduce the risk of missed injury


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 2 | Pages 239 - 243
1 Mar 2004
Cutler L Molloy A Dhukuram V Bass A

Distal tibial physeal fractures are the second most common growth plate injury and the most common cause of growth arrest and deformity. This study assesses the accuracy of pre-operative planning for placement of the screws in these fractures using either standard radiographs or CT scans. We studied 62 consecutive physeal fractures over a period of four years. An outline of a single cut of the CT scan was used for each patient. An ideal position for the screw was determined as being perpendicular to and at the midpoint of the fracture. The difference in entry point and direction of the screw between the ideal and the observers’ assessments were compared using the paired Student’s t-test. There was a statistically significant improvement (p < 0.0001) in the accuracy of the point of insertion and the direction of the screw on the pre-operative plan when CT scans were used rather than plain radiographs. We would, therefore, recommend that CT scans are routinely used in the pre-operative assessment and treatment of distal tibial physeal fractures


The Bone & Joint Journal
Vol. 98-B, Issue 12 | Pages 1668 - 1673
1 Dec 2016
Konda SR Goch AM Leucht P Christiano A Gyftopoulos S Yoeli G Egol KA

Aims. To evaluate whether an ultra-low-dose CT protocol can diagnose selected limb fractures as well as conventional CT (C-CT). Patients and Methods. We prospectively studied 40 consecutive patients with a limb fracture in whom a CT scan was indicated. These were scanned using an ultra-low-dose CT Reduced Effective Dose Using Computed Tomography In Orthopaedic Injury (REDUCTION) protocol. Studies from 16 selected cases were compared with 16 C-CT scans matched for age, gender and type of fracture. Studies were assessed for diagnosis and image quality. Descriptive and reliability statistics were calculated. The total effective radiation dose for each scanned site was compared. Results. The mean estimated effective dose (ED) for the REDUCTION protocol was 0.03 milliSieverts (mSv) and 0.43 mSv (p < 0.005) for C-CT. The sensitivity (Sn), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV) of the REDUCTION protocol to detect fractures were 0.98, 0.89, 0.98 and 0.89 respectively when two occult fractures were excluded. Inter- and intra-observer reliability for diagnosis using the REDUCTION protocol (κ = 0.75, κ = 0.71) were similar to those of C-CT (κ = 0.85, κ = 0.82). Using the REDUCTION protocol, 3D CT reconstructions were equivalent in quality and diagnostic information to those generated by C-CT (κ = 0.87, κ = 0.94). Conclusion. With a near 14-fold reduction in estimated ED compared with C-CT, the REDUCTION protocol reduces the amount of CT radiation substantially without significant diagnostic decay. It produces images that appear to be comparable with those of C-CT for evaluating fractures of the limbs. Cite this article: Bone Joint J 2016;98-B:1668-73


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 3 | Pages 379 - 382
1 May 1990
Egund N Nilsson L Wingstrand H Stromqvist B Pettersson H

Computed tomography was performed on 40 patients with recent hip trauma. Radiographs of 25 showed a fracture of the femoral neck with slight displacement; 24 of these had intra-articular fluid and 20 had a lipohaemarthrosis on the CT scan. In 15 patients, radiographs at the time of admission were normal but suspicion of fracture remained. A fracture was later verified in five patients, four of whom had lipohaemarthrosis on admission. In the remaining 10 patients no fracture could be detected; only one patient had a hip joint effusion but no free fat. Thus all 24 patients with lipohaemarthrosis had an intracapsular fracture of the hip. We suggest CT for patients with hip trauma and negative radiographs. The presence of a lipohaemarthrosis of the hip strongly suggests an intra-articular fracture of either the femoral neck or the acetabulum


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 3 | Pages 381 - 384
1 May 1991
Cohen M Wall E Kerber C Abitbol J Garfin

The nerve roots of the cauda equina may be visualised by contrast-enhanced CT scans and by surface-coil MRI. We have identified the pattern of anatomy from L2-L3 to L5-S1 in 10 human cadaver specimens and correlated this with anatomical dissections. Individual roots are slightly more distinct on contrast-enhanced CT than on surface-coil MRI. There is a crescentic oblique pattern of nerve roots at the lower lumbar levels which is still apparent in the more crowded proximal sections. In all cases, the axial images correlated precisely with the dissections. Current imaging modalities can help the clinical understanding and management of abnormalities in this region of the spine


The Journal of Bone & Joint Surgery British Volume
Vol. 71-B, Issue 3 | Pages 390 - 392
1 May 1989
Hamabuchi M Hasegawa R Murase T

Teratomas in the spinal cord are rare. We report a case in a 54-year-old man. CT scans revealed tumours of different densities within the spinal canal; this heterogeneity may help to differentiate teratoma from other spinal cord tumours. After resection of the tumours under microscopy, the result was excellent. Histological examination showed a variety of tissues, including elements of all three germinal layers


The Journal of Bone & Joint Surgery British Volume
Vol. 72-B, Issue 3 | Pages 480 - 485
1 May 1990
Antti-Poika I Soini J Tallroth K Yrjonen T Konttinen Y

Two different classifications of discograms have been used in a prospective study of 279 injected discs in 100 patients. The five-stage classification of Adams, Dolan and Hutton (1986) showed increased degeneration in the lower lumbar discs and more degenerative changes in men than in women. Exact reproduction of the patient's pain on injection was more common in fissured or ruptured discs than in less degenerate discs, with 81% sensitivity and 64% specificity of the discogram for pain. The additional information obtained by comparing computerised tomography (CT) with discograms was minimal. Discography was found to be useful in the evaluation of chronic low back pain in patients whose ordinary CT scans, myelograms and flexion-extension radiographs were normal. In spondylolysis and spondylolisthesis, discography can disclose whether fusion needs to be extended above the lytic level, and it may show if the pain in patients who have had posterolateral fusion is discogenic. Thus, discography gives information which is useful in deciding whether to operate on patients with chronic low back pain


The Journal of Bone & Joint Surgery British Volume
Vol. 68-B, Issue 2 | Pages 208 - 212
1 Mar 1986
Macdonald W Thrum C Hamilton S

Techniques are described by which metal implants can be designed and produced to fit precisely a bony site at a subsequent operation. CT scans and solid modelling were used to produce an accurate three-dimensional representation of the surface of the bone. These techniques were applied to the production of an internal fixation device for shoulder arthrodesis after the resection of a neoplasm of the proximal humerus. The reconstruction utilised a free vascularised fibular graft between the scapula and the distal humeral remnant, fixation being secured with the custom-made implant


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1395 - 1399
1 Oct 2011
Lee D Kim NH Park J Hwang CJ Lee CS Kim Y Kang SJ Rhee JM

We performed a prospective study to examine the influence of the patient’s position on the location of the abdominal organs, to investigate the possibility of a true lateral approach for transforaminal endoscopic lumbar discectomy. Pre-operative abdominal CT scans were taken in 20 patients who underwent endoscopic lumbar discectomy. Axial images in parallel planes of each intervertebral disc from L1 to L5 were achieved in both supine and prone positions. The most horizontal approach angles possible to avoid injury to the abdominal organs were measured. The results demonstrated that the safe approach angles were significantly less (i.e., more horizontal) in the prone than in the supine position. Obstacles to a more lateral approach were mainly the liver, the spleen and the kidneys at L1/2 (39 of 40, 97.5%) and L2/3 (28 of 40, 70.0%), and the intestines at L3/4 (33 of 40, 82.5%) and L4/5 (30 of 30, 100%). A true lateral approach from each side was possible for 30 of the 40 discs at L3/4 (75%) and 23 of the 30 discs at L4/5 (76.7%). We concluded that a more horizontal approach for transforaminal endoscopic lumbar discectomy is possible in the prone position but not in the supine. Prone abdominal CT is more helpful in determining the trajectory of the endoscope. While a true lateral approach is feasible in many patients, our study shows it is not universally applicable.


The Journal of Bone & Joint Surgery British Volume
Vol. 74-B, Issue 5 | Pages 683 - 685
1 Sep 1992
Fontijne W de Klerk L Braakman R Stijnen T Tanghe H Steenbeek R van Linge B

In 139 patients with burst fractures of the thoracic, thoracolumbar or lumbar spine, the least sagittal diameter of the spinal canal at the level of injury was measured by computerised tomography. By multiple logistic regression we investigated the joint correlation of the level of the burst fracture and the percentage of spinal canal stenosis with the probability of an associated neurological deficit. There was a very significant correlation between neurological deficit and the percentage of spinal canal stenosis; the higher the level of injury the greater was the probability. The severity of neurological deficit could not be predicted.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 97 - 103
1 Mar 2024
Baujard A Martinot P Demondion X Dartus J Faure PA Girard J Migaud H

Aims. Mechanical impingement of the iliopsoas (IP) tendon accounts for 2% to 6% of persistent postoperative pain after total hip arthroplasty (THA). The most common initiator is anterior acetabular component protrusion, where the anterior margin is not covered by anterior acetabular wall. A CT scan can be used to identify and measure this overhang; however, no threshold exists for determining symptomatic anterior IP impingement due to overhang. A case-control study was conducted in which CT scan measurements were used to define a threshold that differentiates patients with IP impingement from asymptomatic patients after THA. Methods. We analyzed the CT scans of 622 patients (758 THAs) between May 2011 and May 2020. From this population, we identified 136 patients with symptoms suggestive of IP impingement. Among them, six were subsequently excluded: three because the diagnosis was refuted intraoperatively, and three because they had another obvious cause of impingement, leaving 130 hips (130 patients) in the study (impingement) group. They were matched to a control group of 138 asymptomatic hips (138 patients) after THA. The anterior acetabular component overhang was measured on an axial CT slice based on anatomical landmarks (orthogonal to the pelvic axis). Results. The impingement group had a median overhang of 8 mm (interquartile range (IQR) 5 to 11) versus 0 mm (IQR 0 to 4) for the control group (p < 0.001). Using receiver operating characteristic curves, an overhang threshold of 4 mm was best correlated with a diagnosis of impingement (sensitivity 79%, specificity 85%; positive predictive value 75%, negative predictive value 85%). Conclusion. Pain after THA related to IP impingement can be reasonably linked to acetabular overhang if it exceeds 4 mm on a CT scan. Below this threshold, it seems logical to look for another cause of IP irritation or another reason for the pain after THA before concluding that impingement is present. Cite this article: Bone Joint J 2024;106-B(3 Supple A):97–103


The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 262 - 268
1 Feb 2018
Puri A Ranganathan P Gulia A Crasto S Hawaldar R Badwe RA

Aims. A single-centre prospective randomized trial was conducted to investigate whether a less intensive follow-up protocol would not be inferior to a conventional follow-up protocol, in terms of overall survival, in patients who have undergone surgery for sarcoma of the limb. Initial short-term results were published in 2014. Patients and Methods. The primary objective was to show non-inferiority of a chest radiograph (CXR) group compared with a CT scan group, and of a less frequent (six-monthly) group than a more frequent (three-monthly) group, in two-by-two comparison. The primary outcome was overall survival and the secondary outcome was a recurrence-free survival. Five-year survival was compared between the CXR and CT scan groups and between the three-monthly and six-monthly groups. Of 500 patients who were enrolled, 476 were available for follow-up. Survival analyses were performed on a per-protocol basis (n = 412). Results. The updated results recorded 12 (2.4%) local recurrences, 182 (36.8%) metastases, and 56 (11.3%) combined (local + metastases) recurrence at a median follow-up of 81 months (60 to 118). Of 68 local recurrences, 60 (88%) were identified by the patients themselves. The six-monthly regime (overall survival (OS) 54%, recurrence-free survival (RFS) 46%) did not lead to a worse survival and was not inferior to the three-monthly regime (OS 55%, RFS 47%) in terms of detecting recurrence. Although CT scans (OS 53%, RFS 54%) detected pulmonary metastasis earlier, it did not lead to a better survival compared with CXR (OS 56%, RFS 59%). Conclusion. The overall survival of patients who are treated for a sarcoma of the limb is not inferior to those followed up with a less intensive regimen than a more intensive protocol, in terms of frequency of visits and mode of imaging. CXR at six-monthly intervals and patient education about examination of the site of the surgery will detect most recurrences without deleterious effects on the eventual outcome. Cite this article: Bone Joint J 2018;100-B:262–8


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 79 - 84
1 Jun 2020
Abdelfadeel W Houston N Star A Saxena A Hozack WJ

Aims. The aim of this study was to analyze the true costs associated with preoperative CT scans performed for robotic-assisted total knee arthroplasty (RATKA) planning and to determine the value of a formal radiologist’s report of these studies. Methods. We reviewed 194 CT reports of 176 sequential patients who underwent primary RATKA by a single surgeon at a suburban teaching hospital. CT radiology reports were reviewed for the presence of incidental findings that might change the management of the patient. Payments for the scans, including the technical and professional components, for 330 patients at two hospitals were also recorded and compared. Results. There were 82 incidental findings in 61 CT studies, one of which led to a recommendation for additional testing. Across both institutions, the mean total payment for a preoperative scan was $446 ($8 to $3,870). The mean patient payment was $71 ($0 to $2,690). There was wide variation in payments between the institutions. In Institution A, the mean total payment was $258 ($168 to $264), with a mean patient payment of $57 ($0 to $100). The mean technical payment in this institution was $211 ($8 to $856), while the mean professional payment was $48 ($0 to $66). In Institution B, the mean total payment was $636 ($37 to $3,870), with a mean patient payment of $85 ($0 to $2,690). Conclusion. The total cost of a CT scan is low and a minimal part of the overall cost of the RATKA. No incidental findings identified on imaging led to a change in management, suggesting that the professional component could be eliminated to reduce costs. Further studies need to take into account the patient perspective and the wide variation in total costs and patient payments across institutions and insurances. Cite this article: Bone Joint J 2020;102-B(6 Supple A):79–84


The Bone & Joint Journal
Vol. 107-B, Issue 1 | Pages 72 - 80
1 Jan 2025
Blyth MJG Clement ND Choo XY Doonan J MacLean A Jones BG

Aims

The aim of this study was to perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted medial unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA).

Methods

Ten-year follow-up of patients who were randomized to rUKA (n = 64) or mUKA (n = 65) was performed. Patients completed the EuroQol five-dimension health questionnaire preoperatively, at three months, and one, two, five, and ten years postoperatively, which was used to calculate quality-adjusted life years (QALY) gained and the incremental cost-effectiveness ratio (ICER). Costs for the index and additional surgery and healthcare costs were calculated.


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 475 - 481
1 May 2024
Lee M Lee G Lee K

Aims. The purpose of this study was to assess the success rate and functional outcomes of bone grafting for periprosthetic bone cysts following total ankle arthroplasty (TAA). Additionally, we evaluated the rate of graft incorporation and identified associated predisposing factors using CT scan. Methods. We reviewed a total of 37 ankles (34 patients) that had undergone bone grafting for periprosthetic bone cysts. A CT scan was performed one year after bone grafting to check the status of graft incorporation. For accurate analysis of cyst volumes and their postoperative changes, 3D-reconstructed CT scan processed with 3D software was used. For functional outcomes, variables such as the Ankle Osteoarthritis Scale score and the visual analogue scale for pain were measured. Results. Out of 37 ankles, graft incorporation was successful in 30 cases. Among the remaining seven cases, four (10.8%) exhibited cyst re-progression, so secondary bone grafting was needed. After secondary bone grafting, no further progression has been noted, resulting in an overall 91.9% success rate (34 of 37) at a mean follow-up period of 47.5 months (24 to 120). The remaining three cases (8.1%) showed implant loosening, so tibiotalocalcaneal arthrodesis was performed. Functional outcomes were also improved after bone grafting in all variables at the latest follow-up (p < 0.05). The mean incorporation rate of the grafts according to the location of the cysts was 84.8% (55.2% to 96.1%) at the medial malleolus, 65.1% (27.6% to 97.1%) at the tibia, and 81.2% (42.8% to 98.7%) at the talus. Smoking was identified as a significant predisposing factor adversely affecting graft incorporation (p = 0.001). Conclusion. Bone grafting for periprosthetic bone cysts following primary TAA is a reliable procedure with a satisfactory success rate and functional outcomes. Regular follow-up, including CT scan, is important for the detection of cyst re-progression to prevent implant loosening after bone grafting. Cite this article: Bone Joint J 2024;106-B(5):475–481


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims. To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. Methods. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated. Results. The mean time between the implantation and the second CT scan was two years (1 to 5). The mean age of the patients during CTAC implantation was 75 years (60 to 92). The mean scaffold-bone contact area increased from 16% (SD 12.6) to 28% (SD 11.9). The mean scaffold-bone distance decreased from a mean of 6.5 mm (SD 2.0) to 5.5 mm (SD 1.6). None of the CTACs were revised or radiologically loose. Conclusion. There was a statistically significant increase of scaffold-bone contact area over time, but the total contact area of the scaffold in relation to the acetabular bone remained relatively low. As all implants remained well fixed, the question remains to what extend the scaffold contributes to the observed stability, in relation to the screws. A future design implication might be an elimination of the bulky scaffold component. This design modification would reduce production costs and may optimize the primary fit of the implant. Cite this article: Bone Joint J 2024;106-B(4):359–364


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 513 - 518
1 Apr 2014
Terrier A Ston J Larrea X Farron A

The three-dimensional (3D) correction of glenoid erosion is critical to the long-term success of total shoulder replacement (TSR). In order to characterise the 3D morphology of eroded glenoid surfaces, we looked for a set of morphological parameters useful for TSR planning. We defined a scapular coordinates system based on non-eroded bony landmarks. The maximum glenoid version was measured and specified in 3D by its orientation angle. Medialisation was considered relative to the spino-glenoid notch. We analysed regular CT scans of 19 normal (N) and 86 osteoarthritic (OA) scapulae. When the maximum version of OA shoulders was higher than 10°, the orientation was not only posterior, but extended in postero-superior (35%), postero-inferior (6%) and anterior sectors (4%). The medialisation of the glenoid was higher in OA than normal shoulders. The orientation angle of maximum version appeared as a critical parameter to specify the glenoid shape in 3D. It will be very useful in planning the best position for the glenoid in TSR.

Cite this article: Bone Joint J 2014;96-B:513–18.


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1041 - 1047
1 Aug 2020
Hamoodi Z Singh J Elvey MH Watts AC

Aims. The Wrightington classification system of fracture-dislocations of the elbow divides these injuries into six subtypes depending on the involvement of the coronoid and the radial head. The aim of this study was to assess the reliability and reproducibility of this classification system. Methods. This was a blinded study using radiographs and CT scans of 48 consecutive patients managed according to the Wrightington classification system between 2010 and 2018. Four trauma and orthopaedic consultants, two post CCT fellows, and one speciality registrar based in the UK classified the injuries. The seven observers reviewed preoperative radiographs and CT scans twice, with a minimum four-week interval. Radiographs and CT scans were reviewed separately. Inter- and intraobserver reliability were calculated using Fleiss and Cohen kappa coefficients. The Landis and Koch criteria were used to interpret the strength of the kappa values. Validity was assessed by calculating the percentage agreement against intraoperative findings. Results. Of the 48 patients, three (6%) had type A injury, 11 (23%) type B, 16 (33%) type B+, 16 (33%) Type C, two (4%) type D+, and none had a type D injury. All 48 patients had anteroposterior (AP) and lateral radiographs, 44 had 2D CT scans, and 39 had 3D reconstructions. The interobserver reliability kappa value was 0.52 for radiographs, 0.71 for 2D CT scans, and 0.73 for a combination of 2D and 3D reconstruction CT scans. The median intraobserver reliability was 0.75 (interquartile range (IQR) 0.62 to 0.79) for radiographs, 0.77 (IQR 0.73 to 0.94) for 2D CT scans, and 0.89 (IQR 0.77 to 0.93) for the combination of 2D and 3D reconstruction. Validity analysis showed that accuracy significantly improved when using CT scans (p = 0.018 and p = 0.028 respectively). Conclusion. The Wrightington classification system is a reliable and valid method of classifying fracture-dislocations of the elbow. CT scans are significantly more accurate than radiographs when identifying the pattern of injury, with good intra- and interobserver reproducibility. Cite this article: Bone Joint J 2020;102-B(8):1041–1047


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 971 - 975
1 May 2021
Hurley P Azzopardi C Botchu R Grainger M Gardner A

Aims. The aim of this study was to assess the reliability of using MRI scans to calculate the Spinal Instability Neoplastic Score (SINS) in patients with metastatic spinal cord compression (MSCC). Methods. A total of 100 patients were retrospectively included in the study. The SINS score was calculated from each patient’s MRI and CT scans by two consultant musculoskeletal radiologists (reviewers 1 and 2) and one consultant spinal surgeon (reviewer 3). In order to avoid potential bias in the assessment, MRI scans were reviewed first. Bland-Altman analysis was used to identify the limits of agreement between the SINS scores from the MRI and CT scans for the three reviewers. Results. The limit of agreement between the SINS score from the MRI and CT scans for the reviewers was -0.11 for reviewer 1 (95% CI 0.82 to -1.04), -0.12 for reviewer 2 (95% CI 1.24 to -1.48), and -0.37 for reviewer 3 (95% CI 2.35 to -3.09). The use of MRI tended to increase the score when compared with that using the CT scan. No patient having their score calculated from MRI scans would have been classified as stable rather than intermediate or unstable when calculated from CT scans, potentially leading to suboptimal care. Conclusion. We found that MRI scans can be used to calculate the SINS score reliably, compared with the score from CT scans. The main difference between the scores derived from MRI and CT was in defining the type of bony lesion. This could be made easier by knowing the site of the primary tumour when calculating the score, or by using inverted T1-volumetric interpolated breath-hold examination MRI to assess the bone more reliably, similar to using CT. Cite this article: Bone Joint J 2021;103-B(5):971–975


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 59 - 65
1 Jul 2021
Bracey DN Hegde V Shimmin AJ Jennings JM Pierrepont JW Dennis DA

Aims. Cross-table lateral (CTL) radiographs are commonly used to measure acetabular component anteversion after total hip arthroplasty (THA). The CTL measurements may differ by > 10° from CT scan measurements but the reasons for this discrepancy are poorly understood. Anteversion measurements from CTL radiographs and CT scans are compared to identify spinopelvic parameters predictive of inaccuracy. Methods. THA patients (n = 47; 27 males, 20 females; mean age 62.9 years (SD 6.95)) with preoperative spinopelvic mobility, radiological analysis, and postoperative CT scans were retrospectively reviewed. Acetabular component anteversion was measured on postoperative CTL radiographs and CT scans using 3D reconstructions of the pelvis. Two cohorts were identified based on a CTL-CT error of ≥ 10° (n = 11) or < 10° (n = 36). Spinopelvic mobility parameters were compared using independent-samples t-tests. Correlation between error and mobility parameters were assessed with Pearson’s coefficient. Results. Patients with CTL error > 10° (10° to 14°) had stiffer lumbar spines with less mean lumbar flexion (38.9°(SD 11.6°) vs 47.4° (SD 13.1°); p = 0.030), different sagittal balance measured by pelvic incidence-lumbar lordosis mismatch (5.9° (SD 18.8°) vs -1.7° (SD 9.8°); p = 0.042), more pelvic extension when seated (pelvic tilt -9.7° (SD 14.1°) vs -2.2° (SD 13.2°); p = 0.050), and greater change in pelvic tilt between supine and seated positions (12.6° (SD 12.1°) vs 4.7° (SD 12.5°); p = 0.036). The CTL measurement error showed a positive correlation with increased CTL anteversion (r = 0.5; p = 0.001), standing lordosis (r = 0.23; p = 0.050), seated lordosis (r = 0.4; p = 0.009), and pelvic tilt change between supine and step-up positions (r = 0.34; p = 0.010). Conclusion. Differences in spinopelvic mobility may explain the variability of acetabular anteversion measurements made on CTL radiographs. Patients with stiff spines and increased compensatory pelvic movement have less accurate measurements on CTL radiographs. Flexion of the contralateral hip is required to obtain clear CTL radiographs. In patients with lumbar stiffness, this movement may extend the pelvis and increase anteversion of the acetabulum on CTL views. Reliable analysis of acetabular component anteversion in this patient population may require advanced imaging with a CT scan. Cite this article: Bone Joint J 2021;103-B(7 Supple B):59–65


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1226 - 1232
1 Nov 2023
Prijs J Rawat J ten Duis K IJpma FFA Doornberg JN Jadav B Jaarsma RL

Aims. Triplane ankle fractures are complex injuries typically occurring in children aged between 12 and 15 years. Classic teaching that closure of the physis dictates the overall fracture pattern, based on studies in the 1960s, has not been challenged. The aim of this paper is to analyze whether these injuries correlate with the advancing closure of the physis with age. Methods. A fracture mapping study was performed in 83 paediatric patients with a triplane ankle fracture treated in three trauma centres between January 2010 and June 2020. Patients aged younger than 18 years who had CT scans available were included. An independent Paediatric Orthopaedic Trauma Surgeon assessed all CT scans and classified the injuries as n-part triplane fractures. Qualitative analysis of the fracture pattern was performed using the modified Cole fracture mapping technique. The maps were assessed for both patterns and correlation with the closing of the physis until consensus was reached by a panel of six surgeons. Results. Fracture map grouped by age demonstrates that, regardless of age (even at the extremes of the spectrum), the fracture lines consolidate in a characteristic Y-pattern, and no shift with closure of the physis was observed. A second fracture map with two years added to female age also did not show a shift. The fracture map, grouped by both age and sex, shows a Y-pattern in all different groups. The fracture lines appear to occur between the anterior and posterior inferior tibiofibular ligaments, and the medially fused physis or deltoid ligament. Conclusion. This fracture mapping study reveals that triplane ankle fractures have a characteristic Y-pattern, and acknowledges the weakness created by the physis, however it also challenges classic teaching that the specific fracture pattern at the level of the joint of these injuries relies on advancing closure of the physis with age. Instead, this study observes the importance of ligament attachment in the fracture patterns of these injuries. Cite this article: Bone Joint J 2023;105-B(11):1226–1232


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims. The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants. Methods. A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up. Results. Mean CT defined discrepancy (Δ) between planned and achieved AV and IC was 4.5° (SD 3°; 0° to 12°) and 4° (SD 3.5°; 1° to 12°), respectively. Malpositioning (Δ > 10°) occurred in five hips (10.6%). Native COR reconstruction was planned in 42 cases (93%), and the mean 3D deviation vector was 15.5 mm (SD 8.5; 4 to 35). There was no significant influence in malpositioning found for femoral stem retention, surgical approach, or fixation method. Conclusion. At short-term follow-up, we found that PPR offers a viable solution for rTHA in cases with massive acetabular bone loss, as highly accurate positioning can be accomplished with meticulous planning, achieving anatomical reconstruction. Accuracy of achieved placement contributed to reduced complications with no injury to vital structures by screw fixation. Cite this article: Bone Joint J 2022;104-B(10):1110–1117


The Bone & Joint Journal
Vol. 103-B, Issue 8 | Pages 1380 - 1385
2 Aug 2021
Kim Y Ryu J Kim JK Al-Dhafer BAA Shin YH

Aims. The aim of this study was to assess arthritis of the basal joint of the thumb quantitatively using bone single-photon emission CT/CT (SPECT/CT) and evaluate its relationship with patients’ pain and function. Methods. We retrospectively reviewed 30 patients (53 hands) with symptomatic basal joint arthritis of the thumb between April 2019 and March 2020. Visual analogue scale (VAS) scores for pain, grip strength, and pinch power of both hands and Patient-Rated Wrist/Hand Evaluation (PRWHE) scores were recorded for all patients. Basal joint arthritis was classified according to the modified Eaton-Glickel stage using routine radiographs and the CT scans of SPECT/CT, respectively. The maximum standardized uptake value (SUVmax) from SPECT/CT was measured in the four peritrapezial joints and the highest uptake was used for analysis. Results. According to Eaton-Glickel classification, 11, 17, 17, and eight hands were stage 0 to I, II, III, and IV, respectively. The interobserver reliability for determining the stage of arthritis was moderate for radiographs (k = 0.41) and substantial for CT scans (k = 0.67). In a binary categorical analysis using SUVmax, pain (p < 0.001) and PRWHE scores (p = 0.004) were significantly higher in hands with higher SUVmax. Using multivariate linear regression to estimate the pain VAS, only SUVmax (B 0.172 (95% confidence interval (CI) 0.065 to 0.279; p = 0.002) showed a significant association. Estimating the variation of PRWHE scores using the same model, only SUVmax (B 1.378 (95% CI, 0.082 to 2.674); p = 0.038) showed a significant association. Conclusion. The CT scans of SPECT/CT provided better interobserver reliability than routine radiographs for evaluating the severity of arthritis. A higher SUVmax in SPECT/CT was associated with more pain and functional disabilities of basal joint arthritis of the thumb. This approach could be used to complement radiographs for the evaluation of patients with this condition. Cite this article: Bone Joint J 2021;103-B(8):1380–1385


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article: Bone Joint J 2024;106-B(9):892–897


The Bone & Joint Journal
Vol. 103-B, Issue 4 | Pages 739 - 745
1 Apr 2021
Mehta JS Hodgson K Yiping L Kho JSB Thimmaiah R Topiwala U Sawlani V Botchu R

Aims. To benchmark the radiation dose to patients during the course of treatment for a spinal deformity. Methods. Our radiation dose database identified 25,745 exposures of 6,017 children (under 18 years of age) and adults treated for a spinal deformity between 1 January 2008 and 31 December 2016. Patients were divided into surgical (974 patients) and non-surgical (5,043 patients) cohorts. We documented the number and doses of ionizing radiation imaging events (radiographs, CT scans, or intraoperative fluoroscopy) for each patient. All the doses for plain radiographs, CT scans, and intraoperative fluoroscopy were combined into a single effective dose by a medical physicist (milliSivert (mSv)). Results. There were more ionizing radiation-based imaging events and higher radiation dose exposures in the surgical group than in the non-surgical group (p < 0.001). The difference in effective dose for children between the surgical and non-surgical groups was statistically significant, the surgical group being significantly higher (p < 0.001). This led to a higher estimated risk of cancer induction for the surgical group (1:222 surgical vs 1:1,418 non-surgical). However, the dose difference for adults was not statistically different between the surgical and non-surgical groups. In all cases the effective dose received by all cohorts was significantly higher than that from exposure to natural background radiation. Conclusion. The treatment of spinal deformity is radiation-heavy. The dose exposure is several times higher when surgical treatment is undertaken. Clinicians should be aware of this and review their practices in order to reduce the radiation dose where possible. Cite this article: Bone Joint J 2021;103-B(4):1–7


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 1020 - 1029
1 Sep 2023
Trouwborst NM ten Duis K Banierink H Doornberg JN van Helden SH Hermans E van Lieshout EMM Nijveldt R Tromp T Stirler VMA Verhofstad MHJ de Vries JPPM Wijffels MME Reininga IHF IJpma FFA

Aims. The aim of this study was to investigate the association between fracture displacement and survivorship of the native hip joint without conversion to a total hip arthroplasty (THA), and to determine predictors for conversion to THA in patients treated nonoperatively for acetabular fractures. Methods. A multicentre cross-sectional study was performed in 170 patients who were treated nonoperatively for an acetabular fracture in three level 1 trauma centres. Using the post-injury diagnostic CT scan, the maximum gap and step-off values in the weightbearing dome were digitally measured by two trauma surgeons. Native hip survival was reported using Kaplan-Meier curves. Predictors for conversion to THA were determined using Cox regression analysis. Results. Of 170 patients, 22 (13%) subsequently received a THA. Native hip survival in patients with a step-off ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 94% vs 70% vs 74%). Native hip survival in patients with a gap ≤ 2 mm, > 2 to 4 mm, or > 4 mm differed at five-year follow-up (respectively: 100% vs 84% vs 78%). Step-off displacement > 2 mm (> 2 to 4 mm hazard ratio (HR) 4.9, > 4 mm HR 5.6) and age > 60 years (HR 2.9) were independent predictors for conversion to THA at follow-up. Conclusion. Patients with minimally displaced acetabular fractures who opt for nonoperative fracture treatment may be informed that fracture displacement (e.g. gap and step-off) up to 2 mm, as measured on CT images, results in limited risk on conversion to THA. Step-off ≥ 2 mm and age > 60 years are predictors for conversion to THA and can be helpful in the shared decision-making process. Cite this article: Bone Joint J 2023;105-B(9):1020–1029


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 912 - 919
1 Aug 2023
Cunningham LJ Walton M Bale S Trail IA

Aims. Reverse total shoulder arthroplasty (rTSA) can be used in complex cases when the glenoid requires reconstruction. In this study, a baseplate with composite bone autograft and a central trabecular titanium peg was implanted, and its migration was assessed for two years postoperatively using radiostereometric analysis (RSA). Methods. A total of 14 patients who underwent a rTSA with an autograft consented to participate. Of these, 11 had a primary rTSA using humeral head autograft and three had a revision rTSA with autograft harvested from the iliac crest. The mean age of the patients was 66 years (39 to 81). Tantalum beads were implanted in the scapula around the glenoid. RSA imaging (stereographic radiographs) was undertaken immediately postoperatively and at three, six, 12, and 24 months. Analysis was completed using model-based RSA software. Outcomes were collected preoperatively and at two years postoperatively, including the Oxford Shoulder Score, the American Shoulder and Elbow Score, and a visual analogue score for pain. A Constant score was also obtained for the assessment of strength and range of motion. Results. RSA analysis showed a small increase in all translation and rotational values up to six months postoperatively, consistent with settling of the implant. The mean values plateaued by 12 months, with no evidence of further migration. In four patients, there was significant variation outside the mean, which corresponded to postoperative complications. There was a significant improvement in the clinical and patient-reported outcomes from the preoperative values to those at two years postoperatively (p < 0.001). Conclusion. These findings show, using RSA, that a glenoid baseplate composite of a trabecular titanium peg with autograft stabilizes within the glenoid about 12 months after surgery, and reinforce findings from a previous study of this implant/graft with CT scans at two years postoperatively, indicating that this type of structural composite results in sound early fixation. Cite this article: Bone Joint J 2023;105-B(8):912–919


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims. The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs. Methods. The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%). Results. For detection and classification, the algorithm was trained on 1,709 radiographs (n = 803), tested on 567 radiographs (n = 244), and subsequently externally validated on 535 radiographs (n = 227). For characterization, healthy shoulders and glenohumeral dislocation were excluded. The overall accuracy for fracture detection was 94% (area under the receiver operating characteristic curve (AUC) = 0.98) and for classification 78% (AUC 0.68 to 0.93). Accuracy to detect greater tuberosity fracture displacement ≥ 1 cm was 35.0% (AUC 0.57). The CNN did not recognize NSAs ≤ 100° (AUC 0.42), nor fractures with ≥ 75% shaft translation (AUC 0.51 to 0.53), or with ≥ 15% articular involvement (AUC 0.48 to 0.49). For all objectives, the model’s performance on the external dataset showed similar accuracy levels. Conclusion. CNNs proficiently rule out proximal humerus fractures on plain radiographs. Despite rigorous training methodology based on CT imaging with multi-rater consensus to serve as the reference standard, artificial intelligence-driven classification is insufficient for clinical implementation. The CNN exhibited poor diagnostic ability to detect greater tuberosity displacement ≥ 1 cm and failed to identify NSAs ≤ 100°, shaft translations, or articular fractures. Cite this article: Bone Joint J 2024;106-B(11):1348–1360


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 128 - 135
1 Feb 2024
Jenkinson MRJ Cheung TCC Witt J Hutt JRB

Aims. The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR. Methods. A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs. Results. Acetabular version was significantly lower and measurements of external rotation of the hemipelvis were significantly increased in the AR group compared to the control group. The AR group also had increased evidence of anterior projection of the iliac wing in the sagittal plane. The acetabular orientation angles were more retroverted in the supine compared to standing position, and the change in acetabular version correlated with the change in sagittal pelvic tilt. An anterior pelvic tilt of 1° correlated with 1.02° of increased cranial retroversion and 0.76° of increased central retroversion. Conclusion. This study has demonstrated that patients with symptomatic AR have both an externally rotated hemipelvis and increased anterior projection of the iliac wing compared to a control group of asymptomatic patients. Functional sagittal pelvic positioning was also found to affect AR in symptomatic patients: the acetabulum was more retroverted in the supine position compared to standing position. Changes in acetabular version correlate with the change in sagittal pelvic tilt. These findings should be taken into account by surgeons when planning acetabular correction for AR with periacetabular osteotomy. Cite this article: Bone Joint J 2024;106-B(2):128–135


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims. The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. Methods. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes. Results. All movement planes showed significant differences when comparing protocols with and without adjustment for posture. The largest mean difference was seen in external rotation, being 62° (SD 16°) without adjustment compared to 25° (SD 9°) with posture adjustment (p < 0.001), with the highest mean difference being 49° (SD 15°) in type C. Mean extension was 57° (SD 18°) without adjustment versus 24° (SD 11°) with adjustment (p < 0.001) and the highest mean difference of 47° (SD 18°) in type C. Mean abducted internal rotation was 69° (SD 11°) without adjustment versus 31° (SD 6°) with posture adjustment (p < 0.001), showing the highest mean difference of 51° (SD 11°) in type C. Conclusion. The present study demonstrates that accounting for scapulothoracic orientation has a significant impact on simulated ROM for rTSA in all motion planes, specifically rendering vastly lower values for external rotation, extension, and high internal rotation. The substantial differences observed in this study warrant a critical re-evaluation of all previously published studies that examined component choice and placement for optimized ROM in rTSA using conventional preoperative planning software. Cite this article: Bone Joint J 2024;106-B(11):1284–1292


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1196 - 1201
1 Nov 2022
Anderson CG Brilliant ZR Jang SJ Sokrab R Mayman DJ Vigdorchik JM Sculco PK Jerabek SA

Aims. Although CT is considered the benchmark to measure femoral version, 3D biplanar radiography (hipEOS) has recently emerged as a possible alternative with reduced exposure to ionizing radiation and shorter examination time. The aim of our study was to evaluate femoral stem version in postoperative total hip arthroplasty (THA) patients and compare the accuracy of hipEOS to CT. We hypothesize that there will be no significant difference in calculated femoral stem version measurements between the two imaging methods. Methods. In this study, 45 patients who underwent THA between February 2016 and February 2020 and had both a postoperative CT and EOS scan were included for evaluation. A fellowship-trained musculoskeletal radiologist and radiological technician measured femoral version for CT and 3D EOS, respectively. Comparison of values for each imaging modality were assessed for statistical significance. Results. Comparison of the mean postoperative femoral stem version measurements between CT and 3D hipEOS showed no significant difference (p = 0.862). In addition, the two version measurements were strongly correlated (r = 0.95; p < 0.001), and the mean paired difference in postoperative femoral version for CT scan and 3D biplanar radiography was -0.09° (95% confidence interval -1.09 to 0.91). Only three stem measurements (6.7%) were considered outliers with a > 5° difference. Conclusion. Our study supports the use of low-dose biplanar radiography for the postoperative assessment of femoral stem version after THA, demonstrating high correlation with CT. We found no significant difference for postoperative femoral version when comparing CT to 3D EOS. We believe 3D EOS is a reliable option to measure postoperative femoral version given its advantages of lower radiation dosage and shorter examination time. Cite this article: Bone Joint J 2022;104-B(11):1196–1201


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1697 - 1702
1 Dec 2020
Schormans PMJ Kooijman MA Ten Bosch JA Poeze M Hannemann PFW

Aims. Fixation of scaphoid nonunion with a volar locking plate and cancellous bone grafting has been shown to be a successful technique in small series. Few mid- or long-term follow-up studies have been reported. The aim of this study was to report the mid-term radiological and functional outcome of plate fixation for scaphoid nonunion. Methods. Patients with a scaphoid nonunion were prospectively enrolled and treated with open reduction using a volar approach, debridement of the nonunion, and fixation using a locking plate and cancellous bone grafting, from the ipsilateral iliac crest. Follow-up included examination, functional assessment using the patient-rated wrist/hand evaluation (PRWHE), and multiplanar reformation CT scans at three-month intervals until union was confirmed. Results. A total of 49 patients with a mean age of 31 years (16 to 74) and a mean duration of nonunion of 3.6 years (0.4 to 16) were included. Postoperatively, the nonunion healed in 47 patients (96%) as shown on CT scans. The mean time to union was 4.2 months (3 to 12). Due to impingement of the plate on the volar rim of the radius and functional limitation, the hardware was removed in 18 patients. At a median follow-up of 38 months in 34 patients, the mean active range of motion (ROM) improved significantly from 89° to 124° (SD 44°; p = 0.003). The mean grip strength improved significantly from 52% to 79% (SD 28%; p < 0.001) of the contralateral side. The mean PRWHE score improved significantly from 66 to 17 points (SD 25; p < 0.001). Conclusion. Locking plate fixation supplemented with autologous cancellous bone grafting is a successful form of treatment for scaphoid nonunion. Functional outcomes improve with the passage of time, and mid-term results are excellent with a significant improvement in ROM, grip strength, and functional outcome as measured by the PRWHE. Cite this article: Bone Joint J 2020;102-B(12):1697–1702


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims. This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height. Methods. Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components. Results. Femoral components in both MA and KA alignments exhibited a more valgus DTSA compared to native femora. However, DTSA deviation from native was significantly less in KA than in MA (4.8° (SD 2.2°) vs 8.8° (SD 1.8°); p < 0.001). DTSA deviation from native orientation correlated positively with the mechanical lateral distal femoral angle (mLDFA) in KA and negatively in MA (r = 0.53, p < 0.001; r = -0.18, p < 0.001). Medial trochlear height was not restored with either MA or KA, with MA resulting in lower medial trochlear height than KA in the proximal 20% of the trochlea. Lateral and sulcus trochlear height was not restored with either alignment in the proximal 80% of the trochlea. At the terminal arc point, KA replicated sulcus and lateral trochlear height, while MA led to over-restoration. Conclusion. Femoral components aligned in KA demonstrated greater biomimetic qualities than those in MA regarding trochlear sulcus orientation and trochlear height restoration, particularly in valgus femora. Variability across knees was observed, warranting further research to evaluate the clinical implications of these findings. Cite this article: Bone Joint J 2024;106-B(8):817–825


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 964 - 969
1 Sep 2024
Wang YC Song JJ Li TT Yang D Lv ZB Wang ZY Zhang ZM Luo Y

Aims. To propose a new method for evaluating paediatric radial neck fractures and improve the accuracy of fracture angulation measurement, particularly in younger children, and thereby facilitate planning treatment in this population. Methods. Clinical data of 117 children with radial neck fractures in our hospital from August 2014 to March 2023 were collected. A total of 50 children (26 males, 24 females, mean age 7.6 years (2 to 13)) met the inclusion criteria and were analyzed. Cases were excluded for the following reasons: Judet grade I and Judet grade IVb (> 85° angulation) classification; poor radiograph image quality; incomplete clinical information; sagittal plane angulation; severe displacement of the ulna fracture; and Monteggia fractures. For each patient, standard elbow anteroposterior (AP) view radiographs and corresponding CT images were acquired. On radiographs, Angle P (complementary to the angle between the long axis of the radial head and the line perpendicular to the physis), Angle S (complementary to the angle between the long axis of the radial head and the midline through the proximal radial shaft), and Angle U (between the long axis of the radial head and the straight line from the distal tip of the capitellum to the coronoid process) were identified as candidates approximating the true coronal plane angulation of radial neck fractures. On the coronal plane of the CT scan, the angulation of radial neck fractures (CTa) was measured and served as the reference standard for measurement. Inter- and intraobserver reliabilities were assessed by Kappa statistics and intraclass correlation coefficient (ICC). Results. Angle U showed the strongest correlation with CTa (p < 0.001). In the analysis of inter- and intraobserver reliability, Kappa values were significantly higher for Angles S and U compared with Angle P. ICC values were excellent among the three groups. Conclusion. Angle U on AP view was the best substitute for CTa when evaluating radial neck fractures in children. Further studies are required to validate this method. Cite this article: Bone Joint J 2024;106-B(9):964–969


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1133 - 1140
1 Oct 2024
Olsen Kipp J Petersen ET Falstie-Jensen T Frost Teilmann J Zejden A Jellesen Åberg R de Raedt S Thillemann TM Stilling M

Aims. This study aimed to quantify the shoulder kinematics during an apprehension-relocation test in patients with anterior shoulder instability (ASI) and glenoid bone loss using the radiostereometric analysis (RSA) method. Kinematics were compared with the patient’s contralateral healthy shoulder. Methods. A total of 20 patients with ASI and > 10% glenoid bone loss and a healthy contralateral shoulder were included. RSA imaging of the patient’s shoulders was performed during a repeated apprehension-relocation test. Bone volume models were generated from CT scans, marked with anatomical coordinate systems, and aligned with the digitally reconstructed bone projections on the RSA images. The glenohumeral joint (GHJ) kinematics were evaluated in the anteroposterior and superoinferior direction of: the humeral head centre location relative to the glenoid centre; and the humeral head contact point location on the glenoid. Results. During the apprehension test, the centre of the humeral head was 1.0 mm (95% CI 0.0 to 2.0) more inferior on the glenoid for the ASI shoulder compared with the healthy shoulder. Furthermore, the contact point of the ASI shoulder was 1.4 mm (95% CI 0.3 to 2.5) more anterior and 2.0 mm (95% CI 0.8 to 3.1) more inferior on the glenoid compared with the healthy shoulder. The contact point of the ASI shoulder was 1.2 mm (95% CI 0.2 to 2.6) more anterior during the apprehension test compared to the relocation test. Conclusion. The humeral head centre was located more inferior, and the GHJ contact point was located both more anterior and inferior during the apprehension test for the ASI shoulders than the healthy shoulders. Furthermore, the contact point displacement between the apprehension and relocation test revealed increased joint laxity for the ASI shoulder than the healthy shoulders. These results contribute to existing knowledge that ASI shoulders with glenoid bone loss may also suffer from inferior shoulder instability. Cite this article: Bone Joint J 2024;106-B(10):1133–1140


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1636 - 1645
1 Dec 2020
Lerch TD Liechti EF Todorski IAS Schmaranzer F Steppacher SD Siebenrock KA Tannast M Klenke FM

Aims. The prevalence of combined abnormalities of femoral torsion (FT) and tibial torsion (TT) is unknown in patients with femoroacetabular impingement (FAI) and hip dysplasia. This study aimed to determine the prevalence of combined abnormalities of FT and TT, and which subgroups are associated with combined abnormalities of FT and TT. Methods. We retrospectively evaluated symptomatic patients with FAI or hip dysplasia with CT scans performed between September 2011 and September 2016. A total of 261 hips (174 patients) had a measurement of FT and TT. Their mean age was 31 years (SD 9), and 63% were female (165 hips). Patients were compared to an asymptomatic control group (48 hips, 27 patients) who had CT scans including femur and tibia available for analysis, which had been acquired for nonorthopaedic reasons. Comparisons were conducted using analysis of variance with Bonferroni correction. Results. In the overall study group, abnormal FT was present in 62% (163 hips). Abnormal TT was present in 42% (109 hips). Normal FT combined with normal TT was present in 21% (55 hips). The most frequent abnormal combination was increased FT combined with normal TT of 32% (84 hips). In the hip dysplasia group, 21% (11 hips) had increased FT combined with increased TT. The prevalence of abnormal FT varied significantly among the subgroups (p < 0.001). We found a significantly higher mean FT for hip dysplasia (31°; SD 15)° and valgus hips (42° (SD 12°)) compared with the control group (22° (SD 8°)). We found a significantly higher mean TT for hips with cam-type-FAI (34° (SD 6°)) and hip dysplasia (35° (SD 9°)) compared with the control group (28° (SD 8°)) (p < 0.001). Conclusion. Patients with FAI had a high prevalence of combined abnormalities of FT and TT. For hip dysplasia, we found a significantly higher mean FT and TT, while 21% of patients (11 hips) had combined increased TT and increased FT (combined torsional malalignment). This is important when planning hip preserving surgery such as periacetabular osteomy and femoral derotation osteotomy. Cite this article: Bone Joint J 2020;102-B(12):1636–1645


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 874 - 880
1 Jul 2020
Langerhuizen DWG Bergsma M Selles CA Jaarsma RL Goslings JC Schep NWL Doornberg JN

Aims. The aim of this study was to investigate whether intraoperative 3D fluoroscopic imaging outperforms dorsal tangential views in the detection of dorsal cortex screw penetration after volar plating of an intra-articular distal radial fracture, as identified on postoperative CT imaging. Methods. A total of 165 prospectively enrolled patients who underwent volar plating for an intra-articular distal radial fracture were retrospectively evaluated to study three intraoperative imaging protocols: 1) standard 2D fluoroscopic imaging with anteroposterior (AP) and elevated lateral images (n = 55); 2) 2D fluoroscopic imaging with AP, lateral, and dorsal tangential views images (n = 50); and 3) 3D fluoroscopy (n = 60). Multiplanar reconstructions of postoperative CT scans served as the reference standard. Results. In order to detect dorsal screw penetration, the sensitivity of dorsal tangential views was 39% with a negative predictive value (NPV) of 91% and an accuracy of 91%; compared with a sensitivity of 25% for 3D fluoroscopy with a NPV of 93% and an accuracy of 93%. On the postoperative CT scans, we found penetrating screws in: 1) 40% of patients in the 2D fluoroscopy group; 2) in 32% of those in the 2D fluoroscopy group with AP, lateral, and dorsal tangential views; and 3) in 25% of patients in the 3D fluoroscopy group. In all three groups, the second compartment was prone to penetration, while the postoperative incidence decreased when more advanced imaging was used. There were no penetrating screws in the third compartment (extensor pollicis longus groove) in the 3D fluoroscopy groups, and one in the dorsal tangential views group. Conclusion. Advanced intraoperative imaging helps to identify screws which have penetrated the dorsal compartments of the wrist. However, based on diagnostic performance characteristics, one cannot conclude that 3D fluoroscopy outperforms dorsal tangential views when used for this purpose. Dorsal tangential views are sufficiently accurate to detect dorsal screw penetration, and arguably more efficacious than 3D fluoroscopy. Cite this article: Bone Joint J 2020;102-B(7):874–880


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims. The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA). Methods. Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom. Results. The greatest kinematic changes in the elbows were seen with the longest, + 4 mm, implant, which imposed a mean joint distraction of 2.8 mm in the radiohumeral joint and of 1.1 mm in the ulnohumeral joint, an increased mean varus angle of up to 2.4° for both the radius and the ulna, a mean shift of the radius of 2.0 mm in the ulnar direction, and a mean shift of the ulna of 1.0 mm posteriorly. Conclusion. The kinematics of the elbow deviated increasingly from those of the native joint with a 2 mm to a 4 mm lengthening of the radius. This confirms the importance of restoring the natural length of the radius when undertaking RHA. Cite this article: Bone Joint J 2024;106-B(10):1165–1175


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 254 - 260
1 Mar 2023
Bukowski BR Sandhu KP Bernatz JT Pickhardt PJ Binkley N Anderson PA Illgen R

Aims. Osteoporosis can determine surgical strategy for total hip arthroplasty (THA), and perioperative fracture risk. The aims of this study were to use hip CT to measure femoral bone mineral density (BMD) using CT X-ray absorptiometry (CTXA), determine if systematic evaluation of preoperative femoral BMD with CTXA would improve identification of osteopenia and osteoporosis compared with available preoperative dual-energy X-ray absorptiometry (DXA) analysis, and determine if improved recognition of low BMD would affect the use of cemented stem fixation. Methods. Retrospective chart review of a single-surgeon database identified 78 patients with CTXA performed prior to robotic-assisted THA (raTHA) (Group 1). Group 1 was age- and sex-matched to 78 raTHAs that had a preoperative hip CT but did not have CTXA analysis (Group 2). Clinical demographics, femoral fixation method, CTXA, and DXA data were recorded. Demographic data were similar for both groups. Results. Preoperative femoral BMD was available for 100% of Group 1 patients (CTXA) and 43.6% of Group 2 patients (DXA). CTXA analysis for all Group 1 patients preoperatively identified 13 osteopenic and eight osteoporotic patients for whom there were no available preoperative DXA data. Cemented stem fixation was used with higher frequency in Group 1 versus Group 2 (28.2% vs 14.3%, respectively; p = 0.030), and in all cases where osteoporosis was diagnosed, irrespective of technique (DXA or CTXA). Conclusion. Preoperative hip CT scans which are routinely obtained prior to raTHA can determine bone health, and thus guide femoral fixation strategy. Systematic preoperative evaluation with CTXA resulted in increased recognition of osteopenia and osteoporosis, and contributed to increased use of cemented femoral fixation compared with routine clinical care; in this small study, however, it did not impact short-term periprosthetic fracture risk. Cite this article: Bone Joint J 2023;105-B(3):254–260


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including spinopelvic mobility. The absolute error for achieving the planned horizontal COR was median 1.4 mm (interquartile range (IQR) 0.87 to 3.42) in RO THA versus 4.3 mm (IQR 3 to 6.8; p < 0.001); vertical COR mean 0.91 mm (SD 0.73) in RO THA versus 2.3 mm (SD 1.3; p < 0.001); and combined offset median 2 mm (IQR 0.97 to 5.45) in RO THA versus 3.9 mm (IQR 2 to 7.9; p = 0.019). Improved accuracy was observed with RO THA in achieving the desired acetabular component positioning (root mean square error for anteversion and inclination was 2.6 and 1.3 vs 8.9 and 5.3, repectively) and leg length (mean 0.6 mm vs 1.4 mm; p < 0.001). Patient-reported outcome measures were comparable between the two groups at baseline and one year. Participants in the RO THA group needed fewer physiotherapy sessions postoperatively (median six (IQR 4.5 to 8) vs eight (IQR 6 to 11; p = 0.005). Conclusion. This RCT suggested that robotic-arm assistance in THA was associated with improved accuracy in restoring the native COR, better preservation of the combined offset, leg length correction, and superior accuracy in achieving the desired acetabular component positioning. Further evaluation through long-term and registry data is necessary to assess whether these findings translate into improved implant survival and functional outcomes. Cite this article: Bone Joint J 2024;106-B(4):324–335


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims. Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients. Methods. A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS). Results. The HSS was significantly lower in the study group (1.76 (SD 0.46)) than in the control group (2.31 (SD 0.74); p = 0.002). A multivariate model showed the odds of having a hip fracture were 17 times greater in patients who had an HSS ≤ 2.2. The CTFEA has a sensitivity of 89%, a specificity of 76%, and an area under the curve of 0.90. Conclusion. This preliminary study demonstrates the feasibility of using a CTFEA-based bone strength parameter to assess hip fracture risk in a population of T2DM patients. Cite this article: Bone Joint J 2021;103-B(9):1497–1504


The Bone & Joint Journal
Vol. 101-B, Issue 3 | Pages 317 - 324
1 Mar 2019
Moon J Kim Y Hwang K Yang J Ryu J Kim Y

Aims. The present study investigated the five-year interval changes in pseudotumours and measured serum metal ions at long-term follow-up of a previous report of 28 mm diameter metal-on-metal (MoM) total hip arthroplasty (THA). Patients and Methods. A total of 72 patients (mean age 46.6 years (37 to 55); 43 men, 29 women; 91 hips) who underwent cementless primary MoM THA with a 28 mm modular head were included. The mean follow-up duration was 20.3 years (18 to 24). All patients had CT scans at a mean 15.1 years (13 to 19) after the index operation and subsequent follow-up at a mean of 20.2 years (18 to 24). Pseudotumour volume, type of mass, and new-onset pseudotumours were evaluated using CT scanning. Clinical outcomes were assessed by Harris Hip Score (HHS) and the presence of groin pain. Serum metal ion (cobalt (Co) and chromium (Cr)) levels were measured at the latest follow-up. Results. At final follow-up, pseudotumours were observed in 26/91 hips (28.6%). There was an increase in volume of the pseudotumour in four hips (15.4%), no change in volume in 21 hips (80.8%), and a decrease in volume in one hip (3.8%). There were no new-onset pseudotumours. There was no significant difference in HHS between patients with and without pseudotumours. At final follow-up, mean serum Co ion levels and median Co:Cr ratios were significantly greater in patients with pseudotumours, but the serum Cr ion levels were not significantly different. Conclusion. At a mean 20 years of follow-up, pseudotumours were observed in 26/91 hips (28.6%) with no new-onset pseudotumours during subsequent follow-up. Most pseudotumours in small-head MoM THA were static in volume and asymptomatic with normal serum metal ion levels. Cite this article: Bone Joint J 2019;101-B:317–324


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 475 - 479
1 Apr 2018
Ali AA Forrester RA O’Connor P Harris NJ

Aims. The aim of this study was to present a series of patients with aseptic failure of a total ankle arthroplasty (TAA) who were treated with fusion of the hindfoot using a nail. Patients and Methods. A total of 23 TAAs, in 22 patients, were revised for aseptic loosening and balloon osteolysis to a hindfoot fusion by a single surgeon (NH) between January 2012 and August 2014. The procedure was carried out without bone graft using the Phoenix, Biomet Hindfoot Arthrodesis Nail. Preoperative investigations included full blood count, CRP and ESR, and radiological investigations including plain radiographs and CT scans. Postoperative plain radiographs were assessed for fusion. When there was any doubt, CT scans were performed. Results. The mean follow-up was 13.9 months (4.3 to 37.2). Union occurred at the tibiotalar joint in 22 ankles (95.6%) with one partial union. Union occurred at the subtalar joint in 20 ankles (87%) of cases with two nonunions. The nail broke in one patient with a subtalar nonunion and revision was undertaken. The only other noted complication was one patient who suffered a stress fracture at the proximal aspect of the nail, which was satisfactorily treated conservatively. Conclusion. This study represents the largest group of patients reported to have undergone revision TAA to fusion of the hindfoot with good results. Cite this article: Bone Joint J 2018;100-B:475–9


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1301 - 1308
1 Jul 2021
Sugiura K Morimoto M Higashino K Takeuchi M Manabe A Takao S Maeda T Sairyo K

Aims. Although lumbosacral transitional vertebrae (LSTV) are well-documented, few large-scale studies have investigated thoracolumbar transitional vertebrae (TLTV) and spinal numerical variants. This study sought to establish the prevalence of numerical variants and to evaluate their relationship with clinical problems. Methods. A total of 1,179 patients who had undergone thoracic, abdominal, and pelvic CT scanning were divided into groups according to the number of thoracic and lumbar vertebrae, and the presence or absence of TLTV or LSTV. The prevalence of spinal anomalies was noted. The relationship of spinal anomalies to clinical symptoms (low back pain, Japanese Orthopaedic Association score, Roland-Morris Disability Questionnaire) and degenerative spondylolisthesis (DS) was also investigated. Results. Normal vertebral morphology (12 thoracic and five lumbar vertebrae without TLTV and LSTV) was present in 531 male (76.7%) and 369 female patients (75.8%). Thoracolumbar transitional vertebrae were present in 15.8% of males and 16.0% of females. LSTV were present in 7.1% of males and 9.0% of females. The prevalence of the anomaly of 16 presacral mobile vertebrae (total number of thoracolumbar vertebrae and TLTV) without LSTV was 1.0% in males and 4.1% in females, and that of the anomaly of 18 vertebrae without LSTV was 5.3% in males and 1.2% in females. The prevalence of DS was significantly higher in females with a total of 16 vertebrae than in those with normal morphology. There was no significant correlation between a spinal anomaly and clinical symptoms. Conclusion. Overall, 24% of subjects had anomalies in the thoracolumbar region: the type of anomaly differed between males and females, which could have significant implications for spinal surgery. A decreased number of vertebrae was associated with DS: numerical variants may potentially be a clinical problem. Cite this article: Bone Joint J 2021;103-B(7):1301–1308


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 617 - 621
1 May 2018
Uehara M Takahashi J Ikegami S Kuraishi S Fukui D Imamura H Okada K Kato H

Aims. Although we often encounter patients with an aortic aneurysm who also have diffuse idiopathic skeletal hyperostosis (DISH), there are no reports to date of an association between these two conditions and the pathogenesis of DISH remains unknown. This study therefore evaluated the prevalence of DISH in patients with a thoracic aortic aneurysm (AA). Patients and Methods. The medical records of 298 patients who underwent CT scans for a diagnosis of an AA or following high-energy trauma were retrospectively examined. A total of 204 patients underwent surgery for an AA and 94 had a high-energy injury and formed the non-AA group. The prevalence of DISH was assessed on CT scans of the chest and abdomen and the relationship between DISH and AA by comparison between the AA and non-AA groups. Results. The prevalence of DISH in the AA group (114/204; 55.9%) was higher than that in the non-AA group (31/94; 33.0%). On multivariate analysis, the factors of AA, male gender, and ageing were independent predictors of the existence of DISH, with odds ratios of 2.9, 1.9, and 1.03, respectively. Conclusion. This study revealed that the prevalence of DISH is higher in patients with an AA than in those without an AA, and that the presence of an AA significantly influenced the prevalence of DISH. Cite this article: Bone Joint J 2018;100-B:617–21


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 640 - 645
1 May 2018
Frietman B Biert J Edwards MJR

Aims. The aim of this study was to record the incidence of post-traumatic osteoarthritis (OA), the need for total hip arthroplasty (THA), and patient-reported outcome measures (PROMS) after surgery for a fracture of the acetabulum, in our centre. Patients and Methods. All patients who underwent surgery for an acetabular fracture between 2004 and 2014 were included. Patients completed the 36-Item Short Form Health Survey (SF-36) and the modified Harris Hip Score (mHHS) questionnaires. A retrospective chart and radiographic review was performed on all patients. CT scans were used to assess the classification of the fracture and the quality of reduction. Results. A total of 220 patients were included, of which 55 (25%) developed post-traumatic OA and 33 (15%) underwent THA. A total of 164 patients completed both questionnaires. At a mean follow-up of six years (2 to 10), the mean SF-36 score for patients with a preserved hip joint was higher on role limitations due to physical health problems than for those with OA or those who underwent THA. In the dimension of bodily pain, patients with OA had a significantly better score than those who underwent THA. Patients with a preserved hip joint had a significantly better score on the function scale of the mHHS and a better total score than those with OA or who underwent THA. Conclusion. Of the patients who were treated surgically for an acetabular fracture (with a mean follow-up of six years), 15% underwent THA at a mean of 2.75 years postoperatively. Patients with a THA had a worse functional outcome than those who retain their native hip joint. We recommend using PROMS and CT scans when reviewing these patients. Cite this article: Bone Joint J 2018;100-B:640–5