Aims. The aim of this study was to evaluate the clinical and radiological
outcome of using an anatomical short-stem shoulder prosthesis to
treat primary osteoarthritis of the glenohumeral joint. Patients and Methods. A total of 66 patients (67 shoulders) with a mean age of 76 years
(63 to 92) were available for clinical and radiological follow-up
at two different timepoints (T1, mean 2.6 years, . sd. 0.5;
T2, mean 5.3 years,. sd. 0.7). Postoperative radiographs
were analyzed for stem angle, cortical contact, and filling ratio
of the stem. Follow-up radiographs were analyzed for timing and
location of bone adaptation (cortical bone narrowing, osteopenia,
spot welds, and condensation lines). The bone adaptation was classified
as low (between zero and three features of bone remodelling around
the humeral stem) or high (four or more features). Results. The mean Constant score improved significantly from 28.5 (. sd. 11.6)
preoperatively to 75.5 (. sd. 8.5) at T1 (p < 0.001) and
remained stable over time (T2: 76.6, . sd. 10.2). No stem
loosening was seen. High bone adaptation was present in 42% of shoulders
at T1, with a slight decrease to 37% at T2. Cortical bone narrowing
and osteopenia in the region of the calcar decreased from 76% to
66% between T1 and T2. Patients with high bone adaptation had a
significantly higher mean filling ratio of the stem at the metaphysis
(0.60, . sd. 0.05 vs 0.55, . sd. 0.06;
p = 0.003) and at the diaphysis (0.65 . sd. 0.05 vs 0.60 . sd. 0.05;
p = 0.007).
Using a modern cementing technique, we implanted 22 stereolithographic polymeric replicas of the Charnley-Kerboul stem in 11 pairs of human cadaver femora. On one side, the replicas were cemented line-to-line with the largest broach. On the other, one-size undersized replicas were used (radial difference, 0.89 mm CT analysis showed that the line-to-line stems without distal centralisers were at least as well aligned and centered as undersized stems with a centraliser, but were surrounded by less cement and presented more areas of thin (<
2 mm) or deficient (<
1 mm) cement. These areas were located predominantly at the corners and in the middle and distal thirds of the stem. Nevertheless, in line-to-line stems, penetration of cement into cancellous bone resulted in a mean thickness of cement of 3.1 mm ( When Charnley-Kerboul stems are cemented line-to-line, good clinical results are observed because cement-deficient areas are limited and are frequently supported by cortical bone.