Aims. Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. Methods. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm. 2. ) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations. Results. No obvious adverse events related to UPAL gel implantation were observed. Self-assessed clinical scores, including pain, symptoms, activities of daily living, sports activity, and quality of life, were improved significantly at three years after surgery. Defect filling was confirmed using second-look arthroscopy at 72 weeks. Significantly improved MRI scores were observed from 12 to 144 weeks postoperatively. Histological examination of biopsy specimens obtained at 72 weeks after implantation revealed an
We evaluated the histological changes before and after fixation in ten knees of ten patients with osteochondritis dissecans who had undergone fixation of the unstable lesions. There were seven males and three females with a mean age of 15 years (11 to 22). The procedure was performed either using bio-absorbable pins only or in combination with an autologous osteochondral plug. A needle biopsy was done at the time of fixation and at the time of a second-look arthroscopy at a mean of 7.8 months (6 to 9) after surgery. The biopsy specimens at the second-look arthroscopy showed significant improvement in the histological grading score compared with the pre-fixation scores (p <
0.01). In the specimens at the second-look arthroscopy, the
An increasing number of patients are treated by autologous chondrocyte implantation (ACI). This study tests the hypothesis that culture within a defined chondrogenic medium containing TGF-β enhances the reexpression of a chondrocytic phenotype and the subsequent production of cartilaginous
Matrix metalloproteinases (MMPs), responsible
for
We assessed the predictive value of the macroscopic and detailed microscopic appearance of the coracoacromial ligament, subacromial bursa and rotator-cuff tendon in 20 patients undergoing subacromial decompression for impingement in the absence of full-thickness tears of the rotator cuff. Histologically, all specimens had features of degenerative change and oedema in the
It is well recognised that meniscal tears situated within the inner, avascular region do not heal. We investigated the potential effect of insulin-like growth factor-I (IGF-I) in promoting regeneration of meniscal tissue in the inner, middle and outer zones of the meniscus. Sheep menisci were harvested and monolayer cell cultures prepared. Various concentrations of IGF-I were used in the presence or absence of 10% fetal calf serum (FCS). We measured the uptake of radioactive thymidine, sulphur, and proline to assess cell proliferation and formation of
We studied the presence of anabolic growth factors in human herniated intervertebral discs (IVD) using a reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry. Messenger RNA (mRNA) was isolated from the nucleus pulposus using oligo (dT). 25. superparamagnetic beads and probing with gene-specific primers in RT-PCR. mRNA coding for TGF-α (3/10), EGF (0/10), TGF-β1 (0/10) and TGF-β3 (2/10) or the EGF receptor (EGF-R; 0/10) and TGF-β type-II receptor (0/10) was found only occasionally. Beta-actin was always present and positive sample controls confirmed the validity of the RT-PCR assay. These RT-PCR findings were confirmed using immunohistochemical staining of EGF and TFG-β, whereas TGF-α protein was always found associated with discocytes. We conclude that the nucleus pulposus of the herniated IVD is vulnerable to proteolytic degradation and depletion of proteoglycans due to the lack and/or low production of anabolic growth factors/receptors which could increase the local synthesis of the
1. The electric potentials in undeformed rabbit tibiae were measured in vivo and in vitro. 2. Surgically traumatised soft-tissues, particularly muscle, constituted the major source of voltage in vivo (up to 22 millivolts). 3. Electrical insulation of the tibia from attached soft parts abolished the high potentials on the bone. 4. Similarly high voltages could be reproduced in an excised tibia by substituting a battery for the injured muscle. 5. Changes in voltage also could be induced by altering blood flow rates or by rapid infusion of saline into the medullary space. 6. Death of the cellular elements in bone did not alter the voltage significantly. 7. The electrical contributions of the nervous system, and of dipole components of the
Dupuytren’s disease is a benign fibroproliferative disease of unknown aetiology. It is often familial and commonly affects Northern European Caucasian men, but genetic studies have yet to identify the relevant genes. Transforming growth factor beta one (TGF-β1) is a multifunctional cytokine which plays a central role in wound healing and fibrosis. It stimulates the proliferation of fibroblasts and the deposition of
The purpose of this study is to determine an individual’s age-specific prevalence of total knee arthroplasty (TKA) after cruciate ligament surgery, and to identify clinical and genetic risk factors associated with undergoing TKA. This study was a retrospective case-control study using the UK Biobank to identify individuals reporting a history of cruciate ligament surgery. Data from verbal history and procedural codes recorded through the NHS were used to identify instances of TKA. Patient clinical and genetic data were used to identify risk factors for progression from cruciate ligament surgery to TKA. Individuals without a history of cruciate ligament reconstruction were used for comparison.Aims
Methods
Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears. Cite this article:
Aseptic loosening is a major cause of failure of total hip arthroplasty. The adverse tissue response to prosthetic wear particles, with activation of cytokine and prostanoid production, contributes to bone loss around the implants. We have investigated the possibility that inducible nitric oxide synthase (iNOS) and cyclo-oxygenase-2 (COX-2) are expressed in macrophages in the pseudomembrane at the bone-implant interface, thereby contributing to the periprosthetic bone resorption. We also assessed whether peroxynitrite, a nitric oxide (NO)-derived oxidant associated with cellular injury, is generated in the membrane. Enzymatic activity of iNOS was measured using the arginine-citrulline assay technique and prostaglandin E. 2. (PGE. 2. ), as an indicator of COX-2 activity, was measured using an enzyme immunoassay. Cellular immunoreactivity for iNOS, nitrotyrosine (a marker of peroxynitrite-induced cellular injury) and COX-2 was assessed by quantitative peroxidase immunocytochemistry while immunofluorescence methods were used for subsequent co-localisation studies with CD68. +. macrophages. The presence of calcium-independent iNOS activity and PGE. 2. production was confirmed in the homogenized interface membrane. Immunocytochemistry showed that periprosthetic CD68. +. wear-debris-laden macrophages were the most prominent cell type immunoreactive for iNOS, nitrotyrosine and COX-2. Other periprosthetic inflammatory and resident cell types were also found to immunolocalise nitrotyrosine thereby suggesting peroxynitrite-induced protein nitrosylation and cellular damage not only in NO-producing CD68. +. macrophages, but also in their neighbouring cells. These data indicate that both iNOS and COX-2 are expressed by CD68. +. macrophages in the interface membrane and peroxynitrite-induced cellular damage is evident in such tissue. If high-output NO and peroxynitrite generation were to cause macrophage cell death, this would result in the release of phagocytosed wear debris into the
Platelet-rich plasma (PRP) intra-articular injections may provide a simple and minimally invasive treatment for early-stage knee osteoarthritis (OA). This has led to an increase in its adoption as a treatment for knee OA, although there is uncertainty about its efficacy and benefit. We hypothesized that patients with early-stage symptomatic knee OA who receive multiple PRP injections will have better clinical outcomes than those receiving single PRP or placebo injections. A double-blinded, randomized placebo-controlled trial was performed with three groups receiving either placebo injections (Normal Saline), one PRP injection followed by two placebo injections, or three PRP injections. Each injection was given one week apart. Outcomes were prospectively collected prior to intervention and then at six weeks, three months, six months, and 12 months post-intervention. Primary outcome measures were Knee Injury and Osteoarthritis Outcome Score (KOOS) and EuroQol five-dimension five-level index (EQ-5D-5L). Secondary outcomes included visual analogue scale for pain and patient subjective assessment of the injections.Aims
Methods
Dupuytren’s disease is a chronic inflammatory process which produces contractures of the fingers. The nodules present in Dupuytren’s tissue contain inflammatory cells, mainly lymphocytes and macrophages. These express a common integrin known as VLA4. The corresponding binding ligands to VLA4 are vascular cell adhesion molecule-1 (VCAM-1) present on the endothelial cells and the CS1 sequence of the fibronectin present in the
Heterotopic ossification (HO) is a common complication after elbow trauma and can cause severe upper limb disability. Although multiple prognostic factors have been reported to be associated with the development of post-traumatic HO, no model has yet been able to combine these predictors more succinctly to convey prognostic information and medical measures to patients. Therefore, this study aimed to identify prognostic factors leading to the formation of HO after surgery for elbow trauma, and to establish and validate a nomogram to predict the probability of HO formation in such particular injuries. This multicentre case-control study comprised 200 patients with post-traumatic elbow HO and 229 patients who had elbow trauma but without HO formation between July 2019 and December 2020. Features possibly associated with HO formation were obtained. The least absolute shrinkage and selection operator regression model was used to optimize feature selection. Multivariable logistic regression analysis was applied to build the new nomogram: the Shanghai post-Traumatic Elbow Heterotopic Ossification Prediction model (STEHOP). STEHOP was validated by concordance index (C-index) and calibration plot. Internal validation was conducted using bootstrapping validation.Aims
Methods
Biochemical and histochemical studies have indicated that there is specific cellular activity in the region of the calcification front of articular cartilage implying that a regulation process takes place there. Using scanning and transmission electron microscopy and light microscopy to examine tissue sections of both undecalcified and decalcified articular cartilage in the region of the calcification front, we have looked at its morphology with particular reference to its cellular control. Our observations show that physiological calcification is an active process under cellular control and is related to the presence of
The management of symptomatic osteochondral lesions of the talus (OLTs) can be challenging. The number of ways of treating these lesions has increased considerably during the last decade, with published studies often providing conflicting, low-level evidence. This paper aims to present an up-to-date concise overview of the best evidence for the surgical treatment of OLTs. Management options are reviewed based on the size of the lesion and include bone marrow stimulation, bone grafting options, drilling techniques, biological preparations, and resurfacing. Although many of these techniques have shown promising results, there remains little high level evidence, and further large scale prospective studies and systematic reviews will be required to identify the optimal form of treatment for these lesions. Cite this article:
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods
Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Aims
Methods
There is a lack of evidence about the risk factors for local recurrence of a giant cell tumour (GCT) of the sacrum treated with nerve-sparing surgery, probably because of the rarity of the disease. This study aimed to answer two questions: first, what is the rate of local recurrence of sacral GCT treated with nerve-sparing surgery and second, what are the risk factors for its local recurrence? A total of 114 patients with a sacral GCT who underwent nerve-sparing surgery at our hospital between July 2005 and August 2017 were reviewed. The rate of local recurrence was determined, and Kaplan-Meier survival analysis carried out to evaluate the mean recurrence-free survival. Possible risks factors including demographics, tumour characteristics, adjuvant therapy, operation, and laboratory indices were analyzed using univariate analysis. Variables with p < 0.100 in the univariate analysis were further considered in a multivariate Cox regression analysis to identify the risk factors.Aims
Methods
Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model. Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II.Aim
Materials and Methods
Dupuytren’s contracture is a benign, myoproliferative condition
affecting the palmar fascia that results in progressive contractures
of the fingers. Despite increased knowledge of the cellular and
connective tissue changes involved, neither a cure nor an optimum
form of treatment exists. The aim of this systematic review was
to summarize the best available evidence on the management of this
condition. A comprehensive database search for randomized controlled trials
(RCTs) was performed until August 2017. We studied RCTs comparing
open fasciectomy with percutaneous needle aponeurotomy (PNA), collagenase
clostridium histolyticum (CCH) with placebo, and CCH with PNA, in
addition to adjuvant treatments aiming to improve the outcome of
open fasciectomy. A total of 20 studies, involving 1584 patients,
were included.Aims
Materials and Methods
The ageing population and an increase in both
the incidence and prevalence of cancer pose a healthcare challenge, some
of which is borne by the orthopaedic community in the form of osteoporotic
fractures and metastatic bone disease. In recent years there has
been an increasing understanding of the pathways involved in bone
metabolism relevant to osteoporosis and metastases in bone. Newer
therapies may aid the management of these problems. One group of
drugs, the antibody mediated anti-resorptive therapies (AMARTs)
use antibodies to block bone resorption pathways. This review seeks
to present a synopsis of the guidelines, pharmacology and potential pathophysiology
of AMARTs and other new anti-resorptive drugs. We evaluate the literature relating to AMARTs and new anti-resorptives
with special attention on those approved for use in clinical practice. Denosumab, a monoclonal antibody against Receptor Activator for
Nuclear Factor Kappa-B Ligand. It is the first AMART approved by
the National Institute for Health and Clinical Excellence and the
US Food and Drug Administration. Other novel anti-resorptives awaiting
approval for clinical use include Odanacatib. Denosumab is indicated for the treatment of osteoporosis and
prevention of the complications of bone metastases. Recent evidence
suggests, however, that denosumab may have an adverse event profile
similar to bisphosphonates, including atypical femoral fractures.
It is, therefore, essential that orthopaedic surgeons are conversant
with these medications and their safe usage. Take home message: Denosumab has important orthopaedic indications
and has been shown to significantly reduce patient morbidity in
osteoporosis and metastatic bone disease. Cite this article:
Articular cartilage repair remains a challenge to surgeons and basic scientists. The field of tissue engineering allows the simultaneous use of material scaffolds, cells and signalling molecules to attempt to modulate the regenerative tissue. This review summarises the research that has been undertaken to date using this approach, with a particular emphasis on those techniques that have been introduced into clinical practice, via in vitro and preclinical studies.
We have used Fourier transform infrared spectroscopy (FTIR) to characterise the chemical and structural composition of the tendons of the rotator cuff and to identify structural differences among anatomically distinct tears. Such information may help to identify biomarkers of tears and to provide insight into the rates of healing of different sizes of tear. The infrared spectra of 81 partial, small, medium, large and massive tears were measured using FTIR and compared with 11 uninjured control tendons. All the spectra were classified using standard techniques of multivariate analysis. FTIR readily differentiates between normal and torn tendons, and different sizes of tear. We identified the key discriminating molecules and spectra altered in torn tendons to be carbohydrates/phospholipids (1030 cm−1 to 1200 cm−1), collagen (1300 cm−1 to 1700 cm−1 and 3000 cm−1 to 3350 cm−1) and lipids (2800 cm−1 to 3000 cm−1). Our study has shown that FTIR spectroscopy can identify tears of the rotator cuff of varying size based upon distinguishable chemical and structural features. The onset of a tear is mainly associated with altered structural arrangements of collagen, with changes in lipids and carbohydrates. The approach described is rapid and has the potential to be used peri-operatively to determine the quality of the tendon and the extent of the disease, thus guiding surgical repair.
The purpose of this study was to examine the effects of hyaluronic acid supplementation on chondrocyte metabolism Bovine articular chondrocytes were isolated and seeded into alginate constructs. These were cultured in medium containing hyaluronic acid at varying concentrations. Samples were assayed for biochemical and histological changes. There was a dose-dependent response to the exposure of hyaluronic acid to bovine articular chondrocytes
The success of anterior cruciate ligament reconstruction (ACLR)
depends on osseointegration at the graft-tunnel interface and intra-articular
ligamentization. Our aim was to conduct a systematic review of clinical
and preclinical studies that evaluated biological augmentation of
graft healing in ACLR. In all, 1879 studies were identified across three databases.
Following assessment against strict criteria, 112 studies were included
(20 clinical studies; 92 animal studies). Aims
Materials and Methods
Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model.
The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.
The aim of this consensus was to develop a definition of post-operative
fibrosis of the knee. An international panel of experts took part in a formal consensus
process composed of a discussion phase and three Delphi rounds.Aims
Patients and Methods
Autologous chondrocyte implantation is an established method of treatment for symptomatic articular defects of cartilage. Clinically, all the patients improved significantly. Patients with lesions larger than 3 cm2 improved significantly more than those with smaller lesions. There was no correlation between the clinical outcome and the body mass index, age, duration of symptoms and location of the defects. The mean arthroscopic International Cartilage Repair Society score was 10 (5 to 12) of a maximum of 12. Predominantly hyaline cartilage was seen in eight of the 13 patients (62%) who had follow-up biopsies. Our findings suggest that autologous chondrocyte implantation in combination with a novel hydrogel results in a significant clinical improvement at follow-up at two years, more so for larger and deeper lesions. The surgical procedure is uncomplicated, and predominantly hyaline cartilage-like repair tissue was observed in eight patients.
The pathophysiology of intervertebral disc degeneration has been extensively studied. Various factors have been suggested as influencing its aetiology, including mechanical factors, such as compressive loading, shear stress and vibration, as well as ageing, genetic, systemic and toxic factors, which can lead to degeneration of the disc through biochemical reactions. How are these factors linked? What is their individual importance? There is no clear evidence indicating whether ageing in the presence of repetitive injury or repetitive injury in the absence of ageing plays a greater role in the degenerative process. Mechanical factors can trigger biochemical reactions which, in turn, may promote the normal biological changes of ageing, which can also be accelerated by genetic factors. Degradation of the molecular structure of the disc during ageing renders it more susceptible to superimposed mechanical injuries. This review supports the theory that degeneration of the disc has a complex multifactorial aetiology. Which factors initiate the events in the degenerative cascade is a question that remains unanswered, but most evidence points to an age-related process influenced primarily by mechanical and genetic factors.
We compared the biological characteristics of extrinsic fibroblasts infiltrating the patellar tendon with those of normal, intrinsic fibroblasts in the normal tendon Proliferation and invasive migration into the patellar tendon was significantly slower for infiltrative fibroblasts than for normal tendon fibroblasts. Flow-cytometric analysis indicated that expression of α5β1 integrin at the cell surface was significantly lower in infiltrative fibroblasts than in normal tendon fibroblasts. The findings suggest that cellular proliferation and invasive migration of fibroblasts into the patellar tendon after necrosis are inferior to those of the normal fibroblasts. The inferior intrinsic properties of infiltrative fibroblasts may contribute to a slow remodelling process in the grafted tendon after ligament reconstruction.
Treatment for osteoarthritis (OA) has traditionally
focused on joint replacement for end-stage disease. An increasing number
of surgical and pharmaceutical strategies for disease prevention
have now been proposed. However, these require the ability to identify
OA at a stage when it is potentially reversible, and detect small
changes in cartilage structure and function to enable treatment
efficacy to be evaluated within an acceptable timeframe. This has
not been possible using conventional imaging techniques but recent
advances in musculoskeletal imaging have been significant. In this
review we discuss the role of different imaging modalities in the
diagnosis of the earliest changes of OA. The increasing number of
MRI sequences that are able to non-invasively detect biochemical
changes in cartilage that precede structural damage may offer a
great advance in the diagnosis and treatment of this debilitating
condition. Cite this article:
We hypothesised that meniscal tears treated with mesenchymal stem cells (MSCs) together with a conventional suturing technique would show improved healing compared with those treated by a conventional suturing technique alone. In a controlled laboratory study 28 adult pigs (56 knees) underwent meniscal procedures after the creation of a radial incision to represent a tear. Group 1 (n = 9) had a radial meniscal tear which was left untreated. In group 2 (n = 19) the incision was repaired with sutures and fibrin glue and in group 3, the experimental group (n = 28), treatment was by MSCs, suturing and fibrin glue. At eight weeks, macroscopic examination of group 1 showed no healing in any specimens. In group 2 no healing was found in 12 specimens and incomplete healing in seven. The experimental group 3 had 21 specimens with complete healing, five with incomplete healing and two with no healing. Between the experimental group and each of the control groups this difference was significant (p <
0.001). The histological and macroscopic findings showed that the repair of meniscal tears in the avascular zone was significantly improved with MSCs, but that the mechanical properties of the healed menisci remained reduced.
Clinical and radiological data were reviewed for all patients
with mucopolysaccharidoses (MPS) with thoracolumbar kyphosis managed
non-operatively or operatively in our institution. In all 16 patients were included (eight female: eight male; 50%
male), of whom nine had Hurler, five Morquio and two Hunter syndrome.
Six patients were treated non-operatively (mean age at presentation
of 6.3 years; 0.4 to 12.9); mean kyphotic progression +1.5o/year;
mean follow-up of 3.1 years (1 to 5.1) and ten patients operatively (mean
age at presentation of 4.7 years; 0.9 to 14.4); mean kyphotic progression
10.8o/year; mean follow-up of 8.2 years; 4.8 to 11.8)
by circumferential arthrodesis with posterior instrumentation in
patients with flexible deformities (n = 6).Aims
Methods
Peri-tendinous injection of local anaesthetic,
both alone and in combination with corticosteroids, is commonly performed
in the treatment of tendinopathies. Previous studies have shown
that local anaesthetics and corticosteroids are chondrotoxic, but
their effect on tenocytes remains unknown. We compared the effects
of lidocaine and ropivacaine, alone or combined with dexamethasone,
on the viability of cultured bovine tenocytes. Tenocytes were exposed
to ten different conditions: 1) normal saline; 2) 1% lidocaine;
3) 2% lidocaine; 4) 0.2% ropivacaine; 5) 0.5% ropivacaine; 6) dexamethasone
(dex); 7) 1% lidocaine+dex; 8) 2% lidocaine+dex; 9) 0.2% ropivacaine+dex;
and 10) 0.5% ropivacaine+dex, for 30 minutes. After a 24-hour recovery
period, the viability of the tenocytes was quantified using the
CellTiter-Glo viability assay and fluorescence-activated cell sorting
(FACS) for live/dead cell counts. A 30-minute exposure to lidocaine
alone was significantly toxic to the tenocytes in a dose-dependent
manner, but a 30-minute exposure to ropivacaine or dexamethasone
alone was not significantly toxic. Dexamethasone potentiated ropivacaine tenocyte toxicity at higher
doses of ropivacaine, but did not potentiate lidocaine tenocyte
toxicity. As seen in other cell types, lidocaine has a dose-dependent
toxicity to tenocytes but ropivacaine is not significantly toxic.
Although dexamethasone alone is not toxic, its combination with
0.5% ropivacaine significantly increased its toxicity to tenocytes.
These findings might be relevant to clinical practice and warrant
further investigation.
We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis
Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.
Systemic factors are believed to be pivotal for the development of heterotopic ossification in severely-injured patients. In this study, cell cultures of putative target cells (human fibroblastic cells, osteoblastic cells (MG-63), and bone-marrow stromal cells (hBM)) were incubated with serum from ten consecutive polytraumatised patients taken from post-traumatic day 1 to day 21 and with serum from 12 healthy control subjects. The serum from the polytraumatised patients significantly stimulated the proliferation of fibroblasts, MG-63 and of hBM cells. The activity of alkaline phosphatase in MG-63 and hBM cells was significantly decreased when exposed to the serum of the severely-injured patient. After three weeks in 3D cell cultures, matrix production and osteogenic gene expression of hBM cells were equal in the patient and control groups. However, the serum from the polytraumatised patients significantly decreased apoptosis of hBM cells compared with the control serum (4.3% Increased proliferation of osteoblastic cells and reduced apoptosis of osteoprogenitors may be responsible for increased osteogenesis in severely-injured patients.
We have studied cellular and vascular changes in different stages of full thickness tears of the rotator cuff. We examined biopsies from the supraspinatus tendon in 40 patients with chronic rotator cuff tears who were undergoing surgery and compared them with biopsies from four uninjured subscapularis tendons. Morphological and immunocytochemical methods using monoclonal antibodies directed against leucocytes, macrophages, mast cells, proliferative and vascular markers were used. Histological changes indicative of repair and inflammation were most evident in small sized rotator cuff tears with increased fibroblast cellularity and intimal hyperplasia, together with increased expression of leucocyte and vascular markers. These reparative and inflammatory changes diminished as the size of the rotator cuff tear increased. Marked oedema and degeneration was seen in large and massive tears, which more often showed chondroid metaplasia and amyloid deposition. There was no association between the age of the patient and the duration of symptoms. In contrast, large and massive tears showed no increase in the number of inflammatory cells and blood vessels. Small sized rotator cuff tears retained the greatest potential to heal, showing increased fibroblast cellularity, blood vessel proliferation and the presence of a significant inflammatory component. Tissue from large and massive tears is of such a degenerative nature that it may be a significant cause of re-rupture after surgical repair and could make healing improbable in this group.
Bovine and human articular chondrocytes were seeded in 2% alginate constructs and cultured for up to 19 days in a rotating-wall-vessel (RWV) and under static conditions. Culture within the RWV enhanced DNA levels for bovine chondrocyte-seeded constructs when compared with static conditions but did not produce enhancement for human cells. There was a significant enhancement of glycosaminoglycans and hydroxyproline synthesis for both bovine and human chondrocytes. In all cases, histological analysis revealed enhanced Safranin-O staining in the peripheral regions of the constructs compared with the central region. There was an overall increase in staining intensity after culture within the RWV compared with static conditions. Type-II collagen was produced by both bovine and human chondrocytes in the peripheral and central regions of the constructs and the staining intensity was enhanced by culture within the RWV. A capsule of flattened cells containing type-I collagen developed around the constructs maintained under static conditions when seeded with either bovine or human chondrocytes, but not when cultured within the RWV bioreactor.
The weight-bearing status of articular cartilage has been shown to affect its biochemical composition. We have investigated the topographical variation of sulphated glycosaminoglycan (GAG) relative to the DNA content of the chondrocyte in human distal femoral articular cartilage. Paired specimens of distal femoral articular cartilage, from weight-bearing and non-weight-bearing regions, were obtained from 13 patients undergoing above-knee amputation. After papain enzyme digestion, spectrophotometric GAG and fluorometric DNA assays assessed the biochemical composition of the samples. The results were analysed using a paired Although there were no significant differences in cell density between the regions, the weight-bearing areas showed a significantly higher concentration of GAG relative to DNA when compared with non-weight-bearing areas (p = 0.02). We conclude that chondrocytes are sensitive to their mechanical environment, and that local loading conditions influence the metabolism of the cells and hence the biochemical structure of the tissue.
The ability of mesenchymal stem cells (MSCs)
to differentiate Despite their increasing application in clinical trials, the
origin and role of MSCs in the development, repair and regeneration
of organs have remained unclear. Until recently, MSCs could only
be isolated in a process that requires culture in a laboratory;
these cells were being used for tissue engineering without understanding
their native location and function. MSCs isolated in this indirect
way have been used in clinical trials and remain the reference standard
cellular substrate for musculoskeletal engineering. The therapeutic
use of autologous MSCs is currently limited by the need for In this annotation we provide an update on the recent developments
in the understanding of the identity of MSCs within tissues and
outline how this may affect their use in orthopaedic surgery in
the future. Cite this article:
Peri-prosthetic osteolysis and subsequent aseptic
loosening is the most common reason for revising total hip replacements.
Wear particles originating from the prosthetic components interact
with multiple cell types in the peri-prosthetic region resulting
in an inflammatory process that ultimately leads to peri-prosthetic
bone loss. These cells include macrophages, osteoclasts, osteoblasts
and fibroblasts. The majority of research in peri-prosthetic osteolysis
has concentrated on the role played by osteoclasts and macrophages.
The purpose of this review is to assess the role of the osteoblast
in peri-prosthetic osteolysis. In peri-prosthetic osteolysis, wear particles may affect osteoblasts
and contribute to the osteolytic process by two mechanisms. First,
particles and metallic ions have been shown to inhibit the osteoblast
in terms of its ability to secrete mineralised bone matrix, by reducing
calcium deposition, alkaline phosphatase activity and its ability
to proliferate. Secondly, particles and metallic ions have been
shown to stimulate osteoblasts to produce pro inflammatory mediators Cite this article:
Treatment strategies for osteoarthritis most commonly involve the removal or replacement of damaged joint tissue. Relatively few treatments attempt to arrest, slow down or reverse the disease process. Such options include peri-articular osteotomy around the hip or knee, and treatment of femoro-acetabular impingement, where early intervention may potentially alter the natural history of the disease. A relatively small proportion of patients with osteoarthritis have a clear predisposing factor that is both suitable for modification and who present early enough for intervention to be deemed worthwhile. This paper reviews recent advances in our understanding of the pathology, imaging and progression of early osteoarthritis.
Injectable collagenase is an alternative to surgical
treatment for Dupuytren’s disease. Previous studies have reported
on the effectiveness of collagenase in finger contractures. This
prospective study reports on the short-term safety and efficacy
of collagenase treatment in five thumb and first web space Dupuytren’s
contractures. The thumb and first web space contractures were treated
with injectable collagenase in four consecutive patients (five hands) with
experience of previous surgical digital fasciectomy. The thumb contracture
was measured by angle and span in two planes of thumb extension
and abduction before injection and after manipulation. Collagenase
treatment resulted in release of the contracture with a mean increase
in thumb to index angle from 23° (10° to 35°) to 56° (45° to 60°)
in extension and from 30° (10° to 50°) to 58° (50° to 65°) in abduction
and a mean increase in span from 1.9 cm (1 to 3.5) to 3.9 cm (3
to 5) in extension and from 2.4 cm (1.5 to 3.5) to 3.9 cm (3 to
4.5) in abduction. All patients reported an increased range of movement
and function and described collagenase therapy as preferable to
surgery. In the short-term collagenase is an effective, well-tolerated
and safe alternative to surgery for Dupuytren’s disease of the thumb.
Conventional amputation prostheses rely on the attachment of the socket to the stump, which may lead to soft-tissue complications. Intraosseous transcutaneous amputation prostheses (ITAPs) allow direct loading of the skeleton, but their success is limited by infection resulting from breaching of the skin at the interface with the implant. Keratinocytes provide the skin’s primary barrier function, while hemidesmosomes mediate their attachment to natural ITAP analogues. Keratinocytes must attach directly to the surface of the implant. We have assessed the proliferation, morphology and attachment of keratinocytes to four titaniumalloy surfaces in order to determine the optimal topography We have shown that the proliferation, morphology and attachment of keratinocytes are affected by the surface topography of the biomaterials used to support their growth. Smoother surfaces improved adhesion. We postulate that a smooth topography at the point of epithelium-ITAP contact could increase attachment
The belief that an intervertebral disc must degenerate
before it can herniate has clinical and medicolegal significance,
but lacks scientific validity. We hypothesised that tissue changes
in herniated discs differ from those in discs that degenerate without
herniation. Tissues were obtained at surgery from 21 herniated discs
and 11 non-herniated discs of similar degeneration as assessed by
the Pfirrmann grade. Thin sections were graded histologically, and
certain features were quantified using immunofluorescence combined
with confocal microscopy and image analysis. Herniated and degenerated
tissues were compared separately for each tissue type: nucleus, inner
annulus and outer annulus. Herniated tissues showed significantly greater proteoglycan loss
(outer annulus), neovascularisation (annulus), innervation (annulus),
cellularity/inflammation (annulus) and expression of matrix-degrading
enzymes (inner annulus) than degenerated discs. No significant differences
were seen in the nucleus tissue from herniated and degenerated discs.
Degenerative changes start in the nucleus, so it seems unlikely
that advanced degeneration caused herniation in 21 of these 32 discs.
On the contrary, specific changes in the annulus can be interpreted
as the consequences of herniation, when disruption allows local
swelling, proteoglycan loss, and the ingrowth of blood vessels,
nerves and inflammatory cells. In conclusion, it should not be assumed that degenerative changes
always precede disc herniation. Cite this article:
We analysed whether a high body mass index (BMI)
had a deleterious effect on outcome following autologous chondrocyte
implantation (ACI) or matrix-carried autologous chondrocyte implantation
(MACI) for the treatment of full-thickness chondral defects of the
knee from a subset of patients enrolled in the ACI vs MACI trial
at The Royal National Orthopaedic Hospital. The mean Modified Cincinnati scores (MCS) were significantly
higher (p <
0.001) post-operatively in patients who had an ideal
body weight (n = 53; 20 to 24.9 kg/m2) than in overweight
(n = 63; 25 to 30 kg/m2) and obese patients (n = 22;
>
30 kg/m2). At a follow-up of two years, obese patients
demonstrated no sustained improvement in the MCS. Patients with
an ideal weight experienced significant improvements as early as
six months after surgery (p = 0.007). In total, 82% of patients
(31 of 38) in the ideal group had a good or excellent result, compared
with 49% (22 of 45) of the overweight and 5.5% (one of 18) in the
obese group (p <
0.001). There was a significant negative relationship between
BMI and the MCS 24 months after surgery (r = -0.4, p = 0.001). This study demonstrates that obese patients have worse knee function
before surgery and experience no sustained benefit from ACI or MACI
at two years after surgery. There was a correlation between increasing
BMI and a lower MCS according to a linear regression analysis. On
the basis of our findings patient selection can be more appropriately
targeted.