The patient with a painful arthritic knee awaiting
total knee arthroplasty (TKA) requires a multidisciplinary approach.
Optimal control of acute post-operative pain and the prevention
of chronic persistent pain remains a challenge. The aim of this
paper is to evaluate whether stratification of patients can help
identify those who are at particular risk for severe acute or chronic
pain. . Intense acute post-operative pain, which is itself a risk factor
for chronic pain, is more common in younger, obese female patients
and those suffering from central pain sensitisation. Pre-operative
pain, in the knee or elsewhere in the body, predisposes to central
sensitisation. Pain due to osteoarthritis of the knee may also trigger
neuropathic pain and may be associated with chronic medication like
opioids, leading to a state of nociceptive sensitisation called
‘opioid-induced hyperalgesia’. Finally, genetic and personality
related risk factors may also put patients at a higher risk for
the development of chronic pain. . Those identified as at risk for chronic pain would benefit from
specific peri-operative management including reduction in opioid
intake pre-operatively, the peri-operative use of antihyperalgesic
drugs such as
Historically, patients undergoing surgery for adolescent idiopathic scoliosis (AIS) have been nursed postoperatively in a critical care (CC) setting because of the challenges posed by prone positioning, extensive exposures, prolonged operating times, significant blood loss, major intraoperative fluid shifts, cardiopulmonary complications, and difficulty in postoperative pain management. The primary aim of this paper was to determine whether a scoring system, which uses Cobb angle, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and number of levels to be fused, is a valid method of predicting the need for postoperative critical care in AIS patients who are to undergo scoliosis correction with posterior spinal fusion (PSF). We retrospectively reviewed all AIS patients who had undergone PSF between January 2018 and January 2020 in a specialist tertiary spinal referral centre. All patients were assessed preoperatively in an anaesthetic clinic. Postoperative care was defined as ward-based (WB) or critical care (CC)Aims
Methods
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods
To examine incidence of complications associated with outpatient
total hip arthroplasty (THA), and to see if medical comorbidities
are associated with complications or extended length of stay. From June 2013 to December 2016, 1279 patients underwent 1472
outpatient THAs at our free-standing ambulatory surgery centre.
Records were reviewed to determine frequency of pre-operative medical
comorbidities and post-operative need for overnight stay and complications
which arose.Aims
Patients and Methods
This animal study compares different methods
of performing an osteotomy, including using an Erbium-doped Yttrium
Aluminum Garnet laser, histologically, radiologically and biomechanically.
A total of 24 New Zealand rabbits were divided into four groups
(Group I: multihole-drilling; Group II: Gigli saw; Group III: electrical
saw blade and Group IV: laser). A proximal transverse diaphyseal
osteotomy was performed on the right tibias of the rabbits after the
application of a circular external fixator. The rabbits were killed
six weeks after the procedure, the operated tibias were resected
and radiographs taken. The specimens were tested biomechanically using three-point bending
forces, and four tibias from each group were examined histologically.
Outcome parameters were the biomechanical stability of the tibias
as assessed by the failure to load and radiographic and histological
examination of the osteotomy site. The osteotomies healed in all specimens both radiographically
and histologically. The differences in the mean radiographic (p
= 0.568) and histological (p = 0.71) scores, and in the mean failure
loads (p = 0.180) were not statistically significant between the
groups. Different methods of performing an osteotomy give similar quality
of union. The laser osteotomy, which is not widely used in orthopaedics
is an alternative to the current methods. Cite this article:
Total knee arthroplasty (TKA) is a major orthopaedic
intervention. The length of a patient's stay has been progressively
reduced with the introduction of enhanced recovery protocols: day-case
surgery has become the ultimate challenge. This narrative review shows the potential limitations of day-case
TKA. These constraints may be social, linked to patient’s comorbidities,
or due to surgery-related adverse events (e.g. pain, post-operative
nausea and vomiting, etc.). Using patient stratification, tailored surgical techniques and
multimodal opioid-sparing analgesia, day-case TKA might be achievable
in a limited group of patients. The younger, male patient without
comorbidities and with an excellent social network around him might
be a candidate. Demographic changes, effective recovery programmes and less invasive
surgical techniques such as unicondylar knee arthroplasty, may increase
the size of the group of potential day-case patients. The cost reduction achieved by day-case TKA needs to be balanced
against any increase in morbidity and mortality and the cost of
advanced follow-up at a distance with new technology. These factors
need to be evaluated before adopting this ultimate ‘fast-track’
approach. Cite this article:
We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to
determine whether irrigation during drilling can reduce the chance of nerve root injury. Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live
rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control)
irrigation. We measured temperatures surrounding the nerve root and made histological
evaluations.Aims
Materials and Methods
Rebound growth after hemiepiphysiodesis may be
a normal event, but little is known about its causes, incidence
or factors related to its intensity. The aim of this study was to
evaluate rebound growth under controlled experimental conditions. A total of 22 six-week-old rabbits underwent a medial proximal
tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal
growth plate arrest was maintained for three weeks, and animals
were killed at intervals ranging between three days and three weeks
after removal of the device. The radiological angulation of the proximal
tibia was studied at weekly intervals during and after hemiepiphysiodesis.
A histological study of the retrieved proximal physis of the tibia
was performed. The mean angulation achieved at three weeks was 34.7° (standard
deviation ( In our rabbit model, rebound was an event of variable incidence
and intensity and, when present, did not appear immediately after
restoration of growth, but took some time to appear. Cite this article:
A retrospective study was performed in 100 children
aged between two and 16 years, with a dorsally angulated stable
fracture of the distal radius or forearm, who were treated with
manipulation in the emergency department (ED) using intranasal diamorphine
and 50% oxygen and nitrous oxide. Pre- and post-manipulation radiographs,
the final radiographs and the clinical notes were reviewed. A successful
reduction was achieved in 90 fractures (90%) and only three children
(3%) required remanipulation and Kirschner wire fixation or internal
fixation. The use of Entonox and intranasal diamorphine is safe and effective
for the closed reduction of a stable paediatric fracture of the
distal radius and forearm in the ED. By facilitating discharge on the same day, there is a substantial
cost benefit to families and the NHS and we recommend this method. Take home message: Simple easily reducible fractures of the distal
radius and forearm in children can be successfully and safely treated
in the ED using this approach, thus avoiding theatre admission and
costly hospital stay. Cite this article:
Amputation in intractable cases of complex regional pain syndrome
(CRPS) remains controversial. The likelihood of recurrent Complex Regional Pain Syndrome (CRPS),
residual and phantom limb pain and persistent disability after amputation
is poorly described in the literature. The aims of this study were
to compare pain, function, depression and quality of life between
patients with intractable CRPS who underwent amputation and those
in whom amputation was considered but not performed. There were 19 patients in each group, with comparable demographic
details. The amputated group included 14 men and five women with
a mean age of 31 years ( All participants completed the following questionnaires: Short-Form
(SF) 36, Short Form McGill Pain questionnaire (SF-MPQ), Pain Disability
Index (PDI), the Beck Depression Inventory (BDI) and a clinical
demographic questionnaire. Aims
Patients and Methods
We studied the effects of hyperbaric oxygen (HBO) and zoledronic acid (ZA) on posterior lumbar fusion using a validated animal model. A total of 40 New Zealand white rabbits underwent posterior lumbar fusion at L5–6 with autogenous iliac bone grafting. They were divided randomly into four groups as follows: group 1, control; group 2, HBO (2.4 atm for two hours daily); group 3, local ZA (20 μg of ZA mixed with bone graft); and group 4, combined HBO and local ZA. All the animals were killed six weeks after surgery and the fusion segments were subjected to radiological analysis, manual palpation, biomechanical testing and histological examination. Five rabbits died within two weeks of operation. Thus, 35 rabbits (eight in group 1 and nine in groups 2, 3 and 4) completed the study. The rates of fusion in groups 3 and 4 (p = 0.015) were higher than in group 1 (p <
0.001) in terms of radiological analysis and in group 4 was higher than in group 1 with regard to manual palpation (p = 0.015). We found a statistically significant difference in the biomechanical analysis between groups 1 and 4 (p = 0.024). Histological examination also showed a statistically significant difference between groups 1 and 4 (p = 0.036). Our results suggest that local ZA combined with HBO may improve the success rate in posterior lumbar spinal fusion.
The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods. In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days. Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response.
Our goal was to evaluate the use of Ponseti’s
method, with minor adaptations, in the treatment of idiopathic clubfeet
presenting in children between five and ten years of age. A retrospective
review was performed in 36 children (55 feet) with a mean age of
7.4 years (5 to 10), supplemented by digital images and video recordings
of gait. There were 19 males and 17 females. The mean follow-up
was 31.5 months (24 to 40). The mean number of casts was 9.5 (6
to 11), and all children required surgery, including a percutaneous
tenotomy or open tendo Achillis lengthening (49%), posterior release
(34.5%), posterior medial soft-tissue release (14.5%), or soft-tissue
release combined with an osteotomy (2%). The mean dorsiflexion of
the ankle was 9° (0° to 15°). Forefoot alignment was neutral in
28 feet (51%) or adducted (<
10°) in 20 feet (36%), >
10° in
seven feet (13%). Hindfoot alignment was neutral or mild valgus
in 26 feet (47%), mild varus (<
10°) in 19 feet (35%), and varus
(>
10°) in ten feet (18%). Heel–toe gait was present in 38 feet
(86%), and 12 (28%) exhibited weight-bearing on the lateral border
(out of a total of 44 feet with gait videos available for analysis).
Overt relapse was identified in nine feet (16%, six children). The
parents of 27 children (75%) were completely satisfied. A plantigrade foot was achieved in 46 feet (84%) without an extensive
soft-tissue release or bony procedure, although under-correction
was common, and longer-term follow-up will be required to assess
the outcome. Cite this article:
Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 ( The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma.
We investigated whether strontium-enriched calcium
phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results
in accelerated healing within the bone tunnel in reconstruction
of the anterior cruciate ligament (ACL). A total of 30 single-bundle
ACL reconstructions using tendo Achillis allograft were performed
in 15 rabbits. The graft on the tested limb was treated with Sr-CPC,
whereas that on the contralateral limb was untreated and served
as a control. At timepoints three, six, nine, 12 and 24 weeks after
surgery, three animals were killed for histological examination.
At six weeks, the graft–bone interface in the control group was
filled in with fibrovascular tissue. However, the gap in the Sr-CPC
group had already been completely filled in with new bone, and there
was evidence of the early formation of Sharpey fibres. At 24 weeks,
remodelling into a normal ACL–bone-like insertion was found in the
Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft
leads to accelerated graft healing within the bone tunnel in a rabbit
model of ACL reconstruction using Achilles tendon allograft. Cite this article:
We compared the intracompartmental pressures
(ICPs) of open and closed tibial fractures with the same injury pattern
in a rabbit model. In all, 20 six-month-old New Zealand White male
rabbits were used. They were randomised into two equal groups of
ten rabbits; an open fracture group (group 1) and a closed fracture
group (group 2). Each anaesthetised rabbit was subjected to a standardised
fracture of the proximal half of the right tibia using a custom-made
device. In order to create a grade II open fracture in group 1,
a 10 mm segment of fascia and periosteum was excised. The ICP in
the anterior compartment was monitored at six-hourly intervals for
48 hours. Although there was a statistically significant difference
in ICP values within each group (both p <
0.001), there was no
significant difference between the groups for all measurements (all
p ≥ 0.089). In addition, in both groups there was a statistically
significant increase in ICP within the first 24 hours, whereas there
was a statistically significant decrease within the second 24 hours
(p <
0.001 for both groups). We conclude that open tibial fractures
should be monitored for the development of acute compartment syndrome
to the same extent as closed fractures. Cite this paper:
Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.
Platelet-derived growth factor (PDGF) is known
to stimulate osteoblast or osteoprogenitor cell activity. We investigated
the effect of locally applied PDGF from poly- These results indicate that local application of PDGF from biodegradable
PDLLA-coated implants significantly accelerates fracture healing
in experimental animals. Further development may help fracture healing
in the clinical situation.
Congenital pseudarthrosis of the tibia is an uncommon manifestation of neurofibromatosis type 1 (NF1), but one that remains difficult to treat due to anabolic deficiency and catabolic excess. Bone grafting and more recently recombinant human bone morphogenetic proteins (rhBMPs) have been identified as pro-anabolic stimuli with the potential to improve the outcome after surgery. As an additional pharmaceutical intervention, we describe the combined use of rhBMP-2 and the bisphosphonate zoledronic acid in a mouse model of NF1-deficient fracture repair. Fractures were generated in the distal tibiae of neurofibromatosis type 1-deficient ( When only rhBMP but no zoledronic acid was used to promote repair, 75% of fractures in These data support the concept that preventing bone loss in combination with anabolic stimulation may improve the outcome following surgical treatment for children with congenital pseudarthoris of the tibia and NF1.
Several bisphosphonates are now available for the treatment of osteoporosis. Porous hydroxyapatite/collagen (HA/Col) composite is an osteoconductive bone substitute which is resorbed by osteoclasts. The effects of the bisphosphonate alendronate on the formation of bone in porous HA/Col and its resorption by osteoclasts were evaluated using a rabbit model. Porous HA/Col cylinders measuring 6 mm in diameter and 8 mm in length, with a pore size of 100 μm to 500 μm and 95% porosity, were inserted into a defect produced in the lateral femoral condyles of 72 rabbits. The rabbits were divided into four groups based on the protocol of alendronate administration: the control group did not receive any alendronate, the pre group had alendronate treatment for three weeks prior to the implantation of the HA/Col, the post group had alendronate treatment following implantation until euthanasia, and the pre+post group had continuous alendronate treatment from three weeks prior to surgery until euthanasia. All rabbits were injected intravenously with either saline or alendronate (7.5 μg/kg) once a week. Each group had 18 rabbits, six in each group being killed at three, six and 12 weeks post-operatively. Alendronate administration suppressed the resorption of the implants. Additionally, the mineral densities of newly formed bone in the alendronate-treated groups were lower than those in the control group at 12 weeks post-operatively. Interestingly, the number of osteoclasts attached to the implant correlated with the extent of bone formation at three weeks. In conclusion, the systemic administration of alendronate in our rabbit model at a dose-for-weight equivalent to the clinical dose used in the treatment of osteoporosis in Japan affected the mineral density and remodelling of bone tissue in implanted porous HA/Col composites.
Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases.
Corticosteroids are prescribed for the treatment of many medical conditions and their adverse effects on bone, including steroid-associated osteoporosis and osteonecrosis, are well documented. Core decompression is performed to treat osteonecrosis, but the results are variable. As steroids may affect bone turnover, this study was designed to investigate bone healing within a bone tunnel after core decompression in an experimental model of steroid-associated osteonecrosis. A total of five 28-week-old New Zealand rabbits were used to establish a model of steroid-induced osteonecrosis and another five rabbits served as controls. Two weeks after the induction of osteonecrosis, core decompression was performed by creating a bone tunnel 3 mm in diameter in both distal femora of each rabbit in both the experimental osteonecrosis and control groups. An In the osteonecrosis group all measurements of bone healing and maturation were lower compared with the control group. Impaired osteogenesis and remodelling within the bone tunnel was demonstrated in the steroid-induced osteonecrosis, accompanied by inferior mechanical properties of the bone. We have confirmed impaired bone healing in a model of bone defects in rabbits with pulsed administration of corticosteroids. This finding may be important in the development of strategies for treatment to improve the prognosis of fracture healing or the repair of bone defects in patients receiving steroid treatment.
Platelet-leucocyte gel (PLG), a new biotechnological blood product, has hitherto been used primarily to treat chronic ulcers and to promote soft-tissue and bone regeneration in a wide range of medical fields. In this study, the antimicrobial efficacy of PLG against Staphylococcus aureus (ATCC 25923) was investigated in a rabbit model of osteomyelitis. Autologous PLG was injected into the tibial canal after inoculation with Staph. aureus. The prophylactic efficacy of PLG was evaluated by microbiological, radiological and histological examination. Animal groups included a treatment group that received systemic cefazolin and a control group that received no treatment. Treatment with PLG or cefazolin significantly reduced radiological and histological severity scores compared to the control group. This result was confirmed by a significant reduction in the infection rate and the number of viable bacteria. Although not comparable to cefazolin, PLG exhibited antimicrobial efficacy in vivo and therefore represents a novel strategy to prevent bone infection in humans.
We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres.
Fractures of the proximal humerus with concomitant vascular injury are rare in children. We describe the presentation, diagnosis, and treatment of a fracture of the proximal humerus in association with an axillary artery injury in a child.
In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute.
The response of the muscle is critical in determining the functional outcome of limb lengthening. We hypothesised that muscle response would vary with age and therefore studied the response of the muscles during tibial lengthening in ten young and ten mature rabbits. A bromodeoxyuridine technique was used to identify the dividing cells. The young rabbits demonstrated a significantly greater proliferative response to the distraction stimulus than the mature ones. This was particularly pronounced at the myotendinous junction, but was also evident within the muscle belly. Younger muscle adapted better to lengthening, suggesting that in patients in whom a large degree of muscle lengthening is required it may be beneficial to carry out this procedure when they are young, in order to achieve the optimal functional result.
We compared time-dependent changes in the biomechanical properties of single-and double-row repair of a simulated acute tear of the rotator cuff in rabbits to determine the effect of the fixation techniques on the healing process. A tear of the supraspinatus tendon was created in 80 rabbits which were separated into two equal groups. A single-row repair with two suture anchors was conducted in group 1 and a double-row repair with four suture anchors in group 2. A total of ten intact contralateral shoulder joints was used as a control group. Biomechanical testing was performed immediately post-operatively and at four and eight weeks, and histological analysis at four and eight weeks. The mean load to failure in group 2 animals was greater than in group 1, but both groups remained lower than the control group at all intervals. Histological analysis showed similar healing properties at four and eight weeks in both groups, but a significantly larger number of healed tendon-bone interfaces were identified in group 2 than in group 1 at eight weeks (p <
0.012). The ultimate load to failure increased with the number of suture anchors used immediately post-operatively, and at four and eight weeks. The increased load to failure at eight weeks seemed to be related to the increase in the surface area of healed tendon-to-bone in the double-row repair group.
To clarify the pathomechanisms of discogenic low back pain, the sympathetic afferent discharge originating from the L5-L6 disc via the L2 root were investigated neurophysiologically in 31 Lewis rats. Sympathetic afferent units were recorded from the L2 root connected to the lumbar sympathetic trunk by rami communicantes. The L5-L6 discs were mechanically probed, stimulated electrically to evoke action potentials and, finally, treated with chemicals to produce an inflammatory reaction. We could not obtain a response from any units in the L5-L6 discs using mechanical stimulation, but with electrical stimulation we identified 42 units consisting mostly of A-delta fibres. In some experiments a response to mechanical probing of the L5-L6 disc was recognised after producing an inflammatory reaction. This study suggests that mechanical stimulation of the lumbar discs may not always produce pain, whereas inflammatory changes may cause the disc to become sensitive to mechanical stimuli, resulting in nociceptive information being transmitted as discogenic low back pain to the spinal cord through the lumbar sympathetic trunk. This may partly explain the variation in human symptoms of degenerate discs.
An understanding of the remodelling of tendon is crucial for the development of scientific methods of treatment and rehabilitation. This study tested the hypothesis that tendon adapts structurally in response to changes in functional loading. A novel model allowed manipulation of the mechanical environment of the patellar tendon in the presence of normal joint movement via the application of an adjustable external fixator mechanism between the patella and the tibia in sheep, while avoiding exposure of the patellar tendon itself. Stress shielding caused a significant reduction in the structural and material properties of stiffness (79%), ultimate load (69%), energy absorbed (61%), elastic modulus (76%) and ultimate stress (72%) of the tendon compared with controls. Compared with the material properties the structural properties exhibited better recovery after re-stressing with stiffness 97%, ultimate load 92%, energy absorbed 96%, elastic modulus 79% and ultimate stress 80%. The cross-sectional area of the re-stressed tendons was significantly greater than that of stress-shielded tendons. The remodelling phenomena exhibited in this study are consistent with a putative feedback mechanism under strain control. This study provides a basis from which to explore the interactions of tendon remodelling and mechanical environment.
We used an A significant improvement in functional weight-bearing was observed between six and 12 weeks. The significant increase in ground reaction force through the operated limb between six and 12 weeks was greater than that reported previously with morcellised graft augmented reconstructions. Histological appearance and collagen fibre orientation with bone block augmentation more closely resembled that of an intact enthesis compared with the morcellised grafting technique. Bone block augmentation of tendon-implant interfaces results in more reliable functional and histological outcomes, with a return to pre-operative levels of weight-bearing by 24 weeks.
Little is known about the increase in length of tendons in postnatal life or of their response to limb lengthening procedures. A study was carried out in ten young and nine adult rabbits in which the tibia was lengthened by 20% at two rates 0.8 mm/day and 1.6 mm/day. The tendon of the flexor digitorum longus (FDL) muscle showed a significant increase in length in response to lengthening of the tibia. The young rabbits exhibited a significantly higher increase in length in the FDL tendon compared with the adults. There was no difference in the amount of lengthening of the FDL tendon at the different rates. Of the increase in length which occurred, 77% was in the proximal half of the tendon. This investigation demonstrated that tendons have the ability to lengthen during limb distraction. This occurred to a greater extent in the young who showed a higher proliferative response, suggesting that there may be less need for formal tendon lengthening in young children.
We studied the effect of vitamin C on fracture healing in the elderly. A total of 80 elderly Osteogenic Disorder Shionogi rats were divided into four groups with different rates of vitamin C intake. A closed bilateral fracture was made in the middle third of the femur of each rat. Five weeks after fracture the femora were analysed by mechanical and histological testing. The groups with the lower vitamin C intake demonstrated a lower mechanical resistance of the healing callus and a lower histological grade. The vitamin C levels in blood during healing correlated with the torque resistance of the callus formed (
The feasibility of bone transport with bone substitute and the factors which are essential for a successful bone transport are unknown. We studied six groups of 12 Japanese white rabbits. Groups A to D received cylindrical autologous bone segments and groups E and F hydroxyapatite prostheses. The periosteum was preserved in group A so that its segments had a blood supply, cells, proteins and scaffold. Group B had no blood supply. Group C had proteins and scaffold and group D had only scaffold. Group E received hydroxyapatite loaded with recombinant human bone morphogenetic protein-2 and group F had hydroxyapatite alone. Distraction osteogenesis occurred in groups A to C and E which had osteo-conductive transport segments loaded with osteo-inductive proteins. We conclude that scaffold and proteins are essential for successful bone transport, and that bone substitute can be used to regenerate bone.
We attempted to repair full-thickness defects in the articular cartilage of the trochlear groove of the femur in 30 rabbit knee joints using allogenic cultured chondrocytes embedded in a collagen gel. The repaired tissues were examined at 2, 4, 8, 12 and 24 weeks after operation using histological and histochemical methods. The articular defect filling index measurement was derived from safranin-O stained sections. Apoptotic cellular fractions were derived from analysis of apoptosis
This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery. Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens. There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures.
We examined the mechanical properties of Vicryl (polyglactin 910) mesh Mesh fibres were visible at six weeks but had been completely resorbed by 12 weeks, with no evidence of chronic inflammation. The tendon-implant neoenthesis was predominantly an indirect type, with tendon attached to the bone-hydroxyapatite surface by perforating collagen fibres.
Despite worldwide clinical use of bio-absorbable devices for internal fixation in orthopaedic surgery, the degradation behaviour and tissue replacement of these implants are not fully understood. In a long-term experimental study, we have determined the patterns of tissue restoration 36 and 54 months after implantation of polyglycolic acid and poly-laevo-lactic acid screws in the distal femur of the rabbit. After 36 months in the polyglycolic acid group the specimens showed no remaining polymer and loose connective tissue occupied 80% of the screw track. Tissue restoration remained poor at 54 months, the amounts of trabecular bone and haematopoietic elements being significantly lower than those in the intact control group. The amount of trabecular bone within the screw track at 54 months in the polyglycolic acid group was less than in the empty drill holes (p = 0.04). In the poly-laevo-lactic acid group, polymeric material was present in abundance after 54 months, occupying 60% of the cross-section of the core area of the screw track. When using absorbable internal fixation implants we should recognise that the degradation of the devices will probably not be accompanied by the restoration of normal trabecular bone.
Critical size defects in ovine tibiae, stabilised with intramedullary interlocking nails, were used to assess whether the addition of carboxymethylcellulose to the standard osteogenic protein-1 (OP-1/BMP-7) implant would affect the implant’s efficacy for bone regeneration. The biomaterial carriers were a ‘putty’ carrier of carboxymethylcellulose and bovine-derived type-I collagen (OPP) or the standard with collagen alone (OPC). These two treatments were also compared to “ungrafted” negative controls. Efficacy of regeneration was determined using radiological, biomechanical and histological evaluations after four months of healing. The defects, filled with OPP and OPC, demonstrated radiodense material spanning the defect after one month of healing, with radiographic evidence of recorticalisation and remodelling by two months. The OPP and OPC treatment groups had equivalent structural and material properties that were significantly greater than those in the ungrafted controls. The structural properties of the OPP- and OPC-treated limbs were equivalent to those of the contralateral untreated limb (p >
0.05), yet material properties were inferior (p <
0.05). Histopathology revealed no residual inflammatory response to the biomaterial carriers or OP-1. The OPP- and OPC-treated animals had 60% to 85% lamellar bone within the defect, and less than 25% of the regenerate was composed of fibrous tissue. The defects in the untreated control animals contained less than 40% lamellar bone and more than 60% was fibrous tissue, creating full cortical thickness defects. In our studies carboxymethylcellulose did not adversely affect the capacity of the standard OP-1 implant for regenerating bone.
The re-establishment of vascularity is an early event in fracture healing; upregulation of angiogenesis may therefore promote the formation of bone. We have investigated the capacity of vascular endothelial growth factor (VEGF) to stimulate the formation of bone in an experimental atrophic nonunion model. Three groups of eight rabbits underwent a standard nonunion operation. This was followed by interfragmentary deposition of 100 μg VEGF, carrier alone or autograft. After seven weeks, torsional failure tests and callus size confirmed that VEGF-treated osteotomies had united whereas the carrier-treated osteotomies failed to unite. The biomechanical properties of the groups treated with VEGF and autograft were identical. There was no difference in bone blood flow. We considered that VEGF stimulated the formation of competent bone in an environment deprived of its normal vascularisation and osteoprogenitor cell supply. It could be used to enhance the healing of fractures predisposed to nonunion.
We used a canine intercalary bone defect model to determine the effects of recombinant human osteogenic protein 1 (rhOP-1) on allograft incorporation. The allograft was treated with an implant made up of rhOP-1 and type I collagen or with type I collagen alone. Radiographic analysis showed an increased volume of periosteal callus in both test groups compared with the control group at weeks 4, 6, 8 and 10. Mechanical testing after 12 weeks revealed increased maximal torque and stiffness in the rhOP-1 treated groups compared with the control group. These results indicate a benefit from the use of an rhOP-1 implant in the healing of bone allografts. The effect was independent of the position of the implant. There may be a beneficial clinical application for this treatment.