Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
The Bone & Joint Journal

Shoulder & Elbow
Dates
Year From

Year To
The Bone & Joint Journal
Vol. 97-B, Issue 1 | Pages 83 - 88
1 Jan 2015
Kocsis G McCulloch TA Thyagarajan D Wallace WA

The LockDown device (previously called Surgilig) is a braided polyester mesh which is mostly used to reconstruct the dislocated acromioclavicular joint. More than 11 000 have been implanted worldwide. Little is known about the tissue reaction to the device nor to its wear products when implanted in an extra-articular site in humans. This is of importance as an adverse immunological reaction could result in osteolysis or damage to the local tissues, thereby affecting the longevity of the implant.

We analysed the histology of five LockDown implants retrieved from five patients over the last seven years by one of the senior authors. Routine analysis was carried out in all five cases and immunohistochemistry in one.

The LockDown device acts as a scaffold for connective tissue which forms an investing fibrous pseudoligament. The immunological response at the histological level seems favourable with a limited histiocytic and giant cell response to micron-sized wear particles. The connective tissue envelope around the implant is less organised than a native ligament.

Cite this article: Bone Joint J 2015;97-B:83–8.


The Bone & Joint Journal
Vol. 98-B, Issue 4 | Pages 512 - 518
1 Apr 2016
Spencer HT Hsu L Sodl J Arianjam A Yian EH

Aims

To compare radiographic failure and re-operation rates of anatomical coracoclavicular (CC) ligament reconstructional techniques with non-anatomical techniques after chronic high grade acromioclavicular (AC) joint injuries.

Patients and Methods

We reviewed chronic AC joint reconstructions within a region-wide healthcare system to identify surgical technique, complications, radiographic failure and re-operations. Procedures fell into four categories: (1) modified Weaver-Dunn, (2) allograft fixed through coracoid and clavicular tunnels, (3) allograft loop coracoclavicular fixation, and (4) combined allograft loop and synthetic cortical button fixation. Among 167 patients (mean age 38.1 years, (standard deviation (sd) 14.7) treated at least a four week interval after injury, 154 had post-operative radiographs available for analysis.


The Bone & Joint Journal
Vol. 95-B, Issue 12 | Pages 1595 - 1602
1 Dec 2013
Modi CS Beazley J Zywiel MG Lawrence TM Veillette CJH

The aim of this review is to address controversies in the management of dislocations of the acromioclavicular joint. Current evidence suggests that operative rather than non-operative treatment of Rockwood grade III dislocations results in better cosmetic and radiological results, similar functional outcomes and longer time off work. Early surgery results in better functional and radiological outcomes with a reduced risk of infection and loss of reduction compared with delayed surgery.

Surgical options include acromioclavicular fixation, coracoclavicular fixation and coracoclavicular ligament reconstruction. Although non-controlled studies report promising results for arthroscopic coracoclavicular fixation, there are no comparative studies with open techniques to draw conclusions about the best surgical approach. Non-rigid coracoclavicular fixation with tendon graft or synthetic materials, or rigid acromioclavicular fixation with a hook plate, is preferable to fixation with coracoclavicular screws owing to significant risks of loosening and breakage.

The evidence, although limited, also suggests that anatomical ligament reconstruction with autograft or certain synthetic grafts may have better outcomes than non-anatomical transfer of the coracoacromial ligament. It has been suggested that this is due to better restoration horizontal and vertical stability of the joint.

Despite the large number of recently published studies, there remains a lack of high-quality evidence, making it difficult to draw firm conclusions regarding these controversial issues.

Cite this article: Bone Joint J 2013;95-B:1595–1602.