Periprosthetic joint infection (PJI) complicates
between 0.5% and 1.2% primary total hip arthroplasties (THAs) and
may have devastating consequences. The traditional assessment of
patients suffering from PJI has involved the serological study of
inflammatory markers and microbiological analysis of samples obtained
from the joint space. Treatment has involved debridement and revision
arthroplasty performed in either one or two stages. We present an update on the burden of PJI, strategies for its
diagnosis and treatment, the challenge of resistant organisms and
the need for definitive evidence to guide the treatment of PJI after
THA. Cite this article:
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article:
Implant-associated infection is a major source
of morbidity in orthopaedic surgery. There has been extensive research
into the development of materials that prevent biofilm formation,
and hence, reduce the risk of infection. Silver nanoparticle technology
is receiving much interest in the field of orthopaedics for its
antimicrobial properties, and the results of studies to date are
encouraging. Antimicrobial effects have been seen when silver nanoparticles are
used in trauma implants, tumour prostheses, bone cement, and also
when combined with hydroxyapatite coatings. Although there are promising
results with Cite this article: